Validation Guide for PendoTECH[®] Single Use Temperature Sensors[™]

Revision 3

www.pendotech.com

CONFIDENTIAL

Validation Guide for PendoTECH Single Temperature Sensors

Copyright © 2007-2022, PendoTECH

All rights reserved. No part of this publication may be reproduced, stored in an electronic retrieval system, or transmitted, in any form or by any means, whether electronic, mechanical, by photocopying, or otherwise, without the written consent of PendoTECH.

PendoTECH assumes no responsibility for the use of this product except for what is covered in the Limited Warranty and Terms and Condition of Sale for products. The products are not designed, intended or authorized for use as components in life support or medical devices. They are not designed for any application in which the failure of the product could result in personal injury, death or property damage.

The sensors are designed for use with the PendoTECH Process Control Systems and temperature transmitters offered by PendoTECH. Other sensor monitors must be tested for compatibility and PendoTECH assumes no responsibility of compatibility of performance with other instruments. The end user must take proper precautions required to make sure there is no damage their monitor.

Revision 3 Latest Revision Date Printed: June 16, 2021

Table of Contents

1	INT	RODUCTION	4
	1.1	Product overview	4
		Purpose of this document	
		Qualification testing comment.	
2		DUCT CATALOG NUMBERS	
3		NUFACTURING INFORMATION	
		Product is manufactured in an FDA Registered, ISO 13485:2016 certified facility	
		Product manufacturing environment	
		Polysulfone molded product body- 100% visual inspection	
		Biocompatibility	
		Each product is tested during manufacturing to verify proper performance	
		RoHS Statement	
	3.7	REACH Statement	
4	MA	FERIALS	6
	4.1	Wet Volume and Surface Area	6
	4.2	Fluid path components	6
5	ASS	EMBLED SENSOR CERTIFICATIONS	6
	5.1	USP Class VI Statement	
		USP 661 post gamma irradiation	
		ISO 10993-5 post gamma irradiation	
		Particulates	
		Bioburden	
		Endotoxins	
		Bacteriostatic and Fungistatic (B&F)	
6		FORMANCE SPECIFICATIONS	
-			
7		DOTECH TEST METHOD SUMMARY	
		Pressure limit of 75 psi	
		Temperature Sensor Accuracy	
	7.3	Shelf life of 5 years and Gamma Compatibility	
		X-ray Compatibility	
		Operating Temperature range 0 to 70°C	
_		Storage Temperature -2 to 65°C	
8		IDOTECH TEST RESULTS	
		Pressure Limit of 75 psi: Burst Testing	
		Temperature Sensor Accuracy	
		Shelf life of 5 years and Gamma Compatibility	
	8.4	X-ray Compatibility	15
9	APP	ENDICES	18
	9.1	Appendix A- Assembled Sensor Certificate: Class VI post 40kGy gamma irradiation	18
	9.2	Appendix B- Assembled Sensor Certificate: USP 661 post gamma irradiation	
	9.3	Appendix C: Assembled Sensor Certificate: ISO 10993-5 post gamma irradiation	
		Appendix D: Assembled Sensor Certificate: Particulates	
		Appendix E: Assembled Sensor Certificate: Bioburden	
		Appendix F: Assembled Sensor Certificate: Endotoxin	
		Appendix G: Assembled Sensor Certificate: B&F	
		Appendix H: Gamma Certificate for Temperature Sensors used in 7.3/8.3	48
	9.9	Appendix I: Certificate of Calibration for Pressure Gauge Used in 8.1	
		Appendix J: Certificate of Calibration for Pressure Gauge used in 8.3	
		Appendix K: X-ray Certificate of Processing for section 7.4/8.4	
	9.12	Appendix L: Certificate of Calibration for Pressure Gauge used in 8.4	61

1 INTRODUCTION

1.1 Product overview

1.1.1 PendoTECH Single Use Temperature Sensors measure temperature in processes accurately and cost effectively. They are low cost for single use applications, but may also be repeatedly cleaned and re-used. They are perfect for bioreactor, filtration and chromatography processes, filling operations, and general process monitoring. These sensors connect to monitors via a reusable cable. Suitable monitors include the handheld unit TEMP340, a PendoTECH Process Control System, a DIN Rail mountable transmitter with a 4-20 mA output, or other pre-qualified third-party monitors. They are the alternative solution for use with tubing to the existing temperature measurements devices on the market. To optimally adapt to tubing the sensors are available with either a hose barb fitting, or sanitary flange. Tubing can be secured directly to the hose barb fitting and the hose barb design imparts no obstruction on the fluid path that can cause a pressure drop and there is no dead-leg at the point where the temperature is measured. The temperature sensing element is a thermistor. No calibration is required because the temperature versus resistance for the thermistor element is well-defined within the specified accuracy range. Within the instrument, the measured resistance is converted to the temperature.

1.2 Purpose of this document

1.2.1 The purpose of this document is to assist end users in qualifying the sensors for use in their process. Each prospective user must test the sensor for its proposed application to determine its suitability for the purpose intended prior to incorporating the sensor to any process or application. The sensor is not intended for use as a component in life support. The sensor is not designed for any application in which the failure of the product could result in property damage, personal injury, or death. Proper Safeguards must be put into place for the process in which the sensor is used.

1.3 Qualification testing comment.

1.3.1 Testing was completed to qualify the product for use in bioprocess applications. In the product manufacturing process, stainless steel tubes and thermistors are installed into the polysulfone product bodies. Pre-existing specifications on certain materials used in the single use temperature sensors are noted.

2 PRODUCT CATALOG NUMBERS

PendoTECH Product Catalog Numbers Covered in This Document							
Part Number	Description						
TEMPS-N-012	Single Use Temperature Sensor, Non-Sterile, 1/8 inch Hose Barb, Polysulfone						
TEMPS-N-025	Single Use Temperature Sensor, Non-Sterile, 1/4 inch Hose Barb, Polysulfone						
TEMPS-N-038	Single Use Temperature Sensor, Non-Sterile, 3/8 inch Hose Barb, Polysulfone						
TEMPS-N-050	Single Use Temperature Sensor, Non-Sterile, 1/2 inch Hose Barb, Polysulfone						
TEMPS-N-075	Single Use Temperature Sensor, Non-Sterile, 3/4 inch Hose Barb, Polysulfone						
TEMPS-N-1-1	Single Use Temperature Sensor, Non-Sterile, 1 inch Sanitary Flange, Polysulfone						

3 MANUFACTURING INFORMATION

3.1 Product is manufactured in an FDA Registered, ISO 13485:2016 certified facility

3.2 Product manufacturing environment

3.2.1 Final assembly of the flow path components is performed in a laminar flow hood (Class 5 clean/controlled environment)

3.3 Polysulfone molded product body- 100% visual inspection

- 3.3.1 Embedded Particulate: Maximum 2 allowed per part. Maximum size of 0.08 mm² in the fluid path. Maximum size of 0.2 mm² anywhere else.
- 3.3.2 Embedded Bubbles: Maximum 2 allowed per part. Maximum size of 0.08 mm² in the fluid path. Maximum size of 0.2 mm² anywhere else.
- 3.3.3 Additional Inspection Criteria: Proprietary information on file at PendoTECH

3.4 Biocompatibility

- 3.4.1 All plastic materials in contact with product fluid path meet USP Class VI requirements
- 3.4.2 All plastic materials in contacts with product fluid are ADCF (Animal Derived Component Free)

3.5 Each product is tested during manufacturing to verify proper performance

- 3.5.1 100% leak testing on the product contact side
- 3.5.2 Every product is tested electrically to confirm proper electrical performance
- 3.5.3 Each thermistor is tested to verify accuracy
 - 3.5.3.1 Each thermistor is tested at 10°C to confirm $4482\Omega\pm0.1^\circ C$
 - 3.5.3.2 Each thermistor is tested at 25°C to confirm $2252\Omega\pm0.1^\circ\text{C}$
 - 3.5.3.3 Each thermistor is tested at 40°C to confirm $1200\Omega\pm0.1^\circ\text{C}$
 - 3.5.3.4 Each product is tested to confirm 500VDC isolation minimum between thermistor assembly and stainless steel tube

3.6 RoHS Statement

3.6.1 All sensors are in conformity with RoHS 3, EU Directive 2015/863.

3.7 REACH Statement

3.7.1 PendoTECH hereby certifies that its single use temperature sensors meet the requirements of Directive EC 1906/2006 commonly known as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) and that to the best of its knowledge its products are free of any materials on the Candidate List of Substances of Very High Concern (SVHC) as stated by the European Chemical Agency (ECA) and that none of these materials are added or used in any of its manufacturing processes. This declaration is effective with production after September 11, 2015 for all Temperature products.

4 MATERIALS

4.1 Wet Volume and Surface Area

Part Number	Wet Volume	Wet Surface
TEMPS-N-012	0.011in ³	0.45in ²
TEMPS-N-025	0.048in ³	0.91in ²
TEMPS-N-038	0.113in ³	1.88in ²
TEMPS-N-050	0.269in ³	3.10in ²
TEMPS-N-075	0.890in ³	6.14in ²
TEMPS-N-1-1	1.850in ³	8.53in ²

4.2 Fluid path components

- 4.2.1 Polysulfone product body: Solvay UDEL P1700; Data provided by suppliers state that they meet USP Class VI; claimed to be animal derived component free by suppliers (letters on file at PendoTECH)
- 4.2.2 Adhesive: Proprietary formulation; Data provided by supplier states meets USP Class VI; claimed to be animal derived component free by supplier (letter on file at PendoTECH)
- 4.2.3 Thermistor Sheath: 304 Stainless Steel; must contact fluid to measure temperature

5 ASSEMBLED SENSOR CERTIFICATIONS

5.1 USP Class VI Statement

5.1.1 All polymeric materials in contact with product fluid path meet the acceptance criteria for USP Class VI Test (with 14 day subcutaneous implants) after exposure to 42-51 kGy of gamma irradiation. Study Summaries are in Appendix A and full reports are on file at PendoTECH. The test articles evaluated were polysulfone pressure sensors, however, the qualification holds true for temperature sensors as the fluid path components are 99% identical. The major difference is the presence of a 304 Stainless Steel sheath for the thermistor in temperature sensors, which is not a polymeric material and therefore not subject to USP Class VI testing.

5.2 USP 661 post gamma irradiation

5.2.1 Fully assembled temperatures sensors meet the criteria of the USP Physicochemical Test for Plastics based upon Nonvolatile Residue, Residue on Ignition, and Buffering Capacity after exposure to 27.5 - 45 kGy of gamma irradiation. The study was conducted based upon the following references: USP 38, National Formulary33, 2015. Monograph <661> Containers, Physicochemical Tests-Plastics. The sensors did not meet the criteria for Heavy Metals of the USP Physiochemical Test. These sensors contain stainless steel probes in the flow path, which likely contributed to this as USP<661> is intended for plastic parts. For more detailed information regarding the presence of heavy metals in this product, please contact PendoTECH directly. Testing was done with PendoTECH conductivity sensors, which are made of identical materials. Test Result Certificates are in Appendix B.

5.3 ISO 10993-5 post gamma irradiation

5.3.1 Fully assembled temperature sensors meet the requirements of ISO 10993-5, Biological Evaluation of Medical Devices – Part5: Tests for In Vitro Cytotoxicity and are not considered to have a cytotoxic effect. Testing was done with PendoTECH conductivity sensors, which are made of identical materials. Test Result Certificates are in Appendix C and full reports are on file at PendoTECH.

5.4 Particulates

5.4.1 Samples of conductivity sensors were randomly selected and sent to Toxikon for particulate testing. Testing was conducted in accordance with the following references: USP 41, National Formulary 36, 2018. <788> Particulate Matter in Injections. The resulting extracts were analyzed using a Particle Measuring System, Automated Parenteral Syringe Sample (APSS)-200 with channel settings of 10 µm and 25 µm. See Test Report in Appendix D for counts of each particle size. These results also apply to temperature sensors as they are manufactured in the same location and consist of the same materials

5.5 Bioburden

5.5.1 Samples of conductivity sensors were randomly selected and sent to Toxikon for bioburden testing. Testing was performed in accordance with ANSI/AAMI/ISO 11737-1:2018. Following validation, the following results were obtained: Average Colony Forming Units (CFU)/Plate = 15.0 and average CFU/Device = 31. Test reports are in Appendix E. These results also apply to temperature sensors as they are manufactured in the same location and consist of the same materials

5.6 Endotoxins

5.6.1 Samples of Conductivity sensors post 40 kGy gamma irradiation were submitted for Chromogenic Endotoxin Testing. The study was based upon the following references: USP 42 NF 37, 2019. <85> Bacterial Endotoxin Test. ISO 10993-12, 2012. Following test validation, three test articles gave the following results: < 0.00500 EU/mL and < 0.6 EU/device of bacterial endotoxin and meets USP <85>, Bacterial Endotoxin Test. Study validation and sample testing reports are in Appendix F. These results also apply to temperature sensors as they are manufactured in the same location and consist of the same materials

5.7 Bacteriostatic and Fungistatic (B&F)

5.7.1 B&F testing was carried out by the method suitability test via membrane filtration – USP. The study was conducted with accordance to the following references: USP 41, NF 36, 2018. <71> Sterility Tests. ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories. Testing determined the sensors are considered non-bacteriostatic and non-fungistatic, according to the USP guidelines. The test articles evaluated were polysulfone pressure sensors, however, the qualification holds true for temperature sensors as the fluid path components are 99% identical. The major difference is the presence of a 304 Stainless Steel sheath for the thermistor in temperature sensors, which would not affect the bacteriostatic and fungistatic properties of the sensor. Test reports are in Appendix G.

6 PERFORMANCE SPECIFICATIONS

Attribute	Specification	Qualification Test Information
Accuracy	0°C to 70°C: ± 0.2°C	Qualification Testing by PendoTECH, Specifications of Thermistor
Pressure Range	75 psi max	In Process Manufacturing Testing by PendoTECH
Gamma Irradiation	Up to 50 kiloGrays	Qualification Testing by PendoTECH
X-ray Irradiation	Up to 50 kiloGrays	Qualification Testing by PendoTECH
Post Irradiation Accuracy	0°C to 2°C: ± 0.5°C 2°C to 50°C: ± 0.2°C 50°C to 70°C: ± 0.5°C	Qualification Testing by PendoTECH
Operating Temperature	0°C to 70°C	Raw Material Specifications
Storage Temperature	-25°C to 65°C	Raw Material Specification
Shelf life	5 years	Qualification Testing by PendoTECH

7 PENDOTECH TEST METHOD SUMMARY

7.1 Pressure limit of 75 psi

7.1.1 In order to further qualify temperature sensors to be physically compatible at pressures of 75 psi, high pressure leak and burst testing was carried out. Testing was performed on PendoTECH Single Use Conductivity sensors, which have the same design, consist of the same materials, are manufactured in the same location, and use the same temperature sensing element. The only difference is that conductivity sensors have two additional electrodes for measuring conductivity. Nine sensors, 3 each from 3 different lots, were randomly selected for testing. These sensors were first exposed to 100 psi and visually inspected for leaks using soapy water. Afterwards, 150+ psi was applied to the sensors to verify sensor integrity by checking for bursts. The final test pressure and result for each sensor was recorded.

7.2 Temperature Sensor Accuracy

7.2.1 PendoTECH has carried out a study challenging the thermistors manufacturing claim of "better than \pm 0.2°C (typically better than \pm 0.1°C)", in the range 0°C to 70°C. This report covers the results of special testing requested by PendoTECH to verify the temperature accuracy claimed on the thermistor. The normal production process measures the thermistor prior to assembly into the full sensor, and between 25°C and 45°C. This testing covers the full range traditionally claimed by PendoTECH: 0°C to 70°C. The result of the study addresses special testing on fully assembled PendoTECH temperature sensors, which possess the same thermistor in conductivity sensors. The raw resistance measurements demonstrate that the sensors are well within the \pm 0.2°C tolerance band/specification across the entire 0°C to 70°C range. Only a few measurements were even outside of the \pm 0.1°C tolerance band. Capability analysis shows that the thermistor manufacturing process is capable of consistently meeting the requirement. Results of the study are detailed in the report below.

7.3 Shelf life of 5 years and Gamma Compatibility

- 7.3.1 PendoTECH has validated a 5-year shelf life and gamma compatibility for its temperature sensor by performance testing real time aged and gamma irradiated sensors. Samples of temperature sensors that were stored on the shelf under ambient conditions for 2 years, gamma irradiated, and then stored for 3+ more years were tested for accuracy at 2, 10, 20, 50, and 70°C. The sensors were submerged in a calibrated MEAS Brand Temperature Bath, which controlled the temperature setpoint. The raw resistance readings were measured with a calibrated multimeter and then converted to degrees Celsius using the Steinhart-Hart equation. The temperature reading and error for each point are reported here.
- 7.3.2 In order to validate sensor integrity after a 5 year shelf life and gamma irradiation, leak testing was performed on sensors that were gamma irradiated and stored on the shelf under ambient conditions for a total of 5+years. These were the same temperature sensors used for the accuracy testing described above. A 90 second pressure decay test was performed at 60 psi. The pressure decay of each sensor is reported here.

7.4 X-ray Compatibility

7.4.1 In accordance with the BioProcess System's Alliance (BPSA) white paper on the requirements and risk evaluation of the X-ray sterilization of single use equipment, a risk assessment was performed to identify the tests required to qualify PendoTECH Single Use Temperature Sensors for X-ray irradiation for a dose > 50 kiloGrays (Certificate in Appendix K). As these sensors contain no active electronics and are composed of robust, gamma compatible materials, they were deemed to be very low risk. Basic functionality and leak testing was still performed to demonstrate compatibility as a precaution. Testing was performed on PendoTECH single Use Conductivity sensors, which have the same design, consist of the same materials, are manufactured in the same location, and use the same temperature sensing element. The only difference is that conductivity sensors have two additional electrodes for measuring conductivity. Testing procedures and results are documented below.

7.5 Operating Temperature range 0 to 70°C

7.5.1 PendoTECH has determined a 0 to 70°C operating temperature range for Single Use Temperature sensors based on thermistor qualification and raw material specifications. PendoTECH has on file information from all sensor component material suppliers stating operating temperature ranges that are congruent with a 0 to 70°C claim.

7.6 Storage Temperature -2 to 65°C

7.6.1 PendoTECH has determined a -25° to 65°C storage temperature range for Single Use Temperature sensors based on raw material specifications. PendoTECH has on file information from all sensor component material manufacturers stating very wide storage temperature ranges well outside the - 25° to 65°C claim. For consistency and a healthy safety factor, PendoTECH has narrowed the range to be the same as other PendoTECH single use sensors. Other storage temperature ranges may be viable with proper end user process qualification.

8 PENDOTECH TEST RESULTS

8.1 Pressure Limit of 75 psi: Burst Testing

- 8.1.1 Procedure: Testing was conducted with conductivity sensors, which are made of identical components and assembled in the same facility by the same operators using the same procedure. 9 conductivity sensors, 3 each from 3 different lots, were randomly selected for testing. First, the sensors were exposed to 100 psi and visually inspected for leaks. Soapy water was placed on the sensor test port and around the sensor cap to easily identify any leaks. Afterwards, these sensors were exposed to pressures of 150+ psi and checked for bursts to verify sensor integrity. The final test pressure and burst/leak result for each sensor is reported here
 - 8.1.1.1 Calibrated Pressure Gauge: Model: Druck DPI 104 S/N: 2936090 (Cert in Appendix I)
 - 8.1.1.2 Acceptance Criteria: No identifiable leaks after exposure to 90 psi for 100 seconds and no burst.
- 8.1.2 Data Summary:

Sensor	Lot #	Leak Result	Burst Result	Final Burst Pressure (psi)
1	19G96991	Pass	Pass	160.62
2	19G96991	Pass	Pass	160.64
3	19G96991	Pass	Pass	160.65
4	19D86473	Pass	Pass	160.65
5	19D86473	Pass	Pass	160.65
6	19D86473	Pass	Pass	160.63
7	19D90369	Pass	Pass	160.64
8	19D90369	Pass	Pass	160.65
9	19D90369	Pass	Pass	160.64

8.1.3 Conclusion: All sensors passed leak and burst testing and are therefore suitable for exposure up to a maximum pressure of 75 psi

8.2 Temperature Sensor Accuracy

8.2.1 See Report below

Special Test Report for PendoTECH Single Use Temperature Sensor[™] TEMP-N-050 TESS-ANDO-502-R000017 Revision: A

PURPOSE

This report covers the results of special testing requested by PendoTECH to verify the temperature accuracy claimed on the thermistor. The normal production process measures the thermistor prior to assembly into the full sensor, and between 25 °C and 45 °C. This testing covers the full range traditionally claimed by PendoTECH: $\pm 0.2^{\circ}$ C from 0°C to 70 °C.

SCOPE

This report addresses special testing on fully assembled PendoTECH sensors. TEMP-N-050 was chosen as the representative part, since it has the largest flow path making it the most practical to measure in a controlled bath.

EXECUTIVE SUMMARY

The raw resistance measurements demonstrate that the sensors are well within the ± 0.2 °C tolerance band/specification across the entire 0 °C to 70 °C range. Only a few measurements were even outside of the ± 0.1 °C tolerance band. Capability analysis shows that the thermistor manufacturing process is capable of consistently meeting the requirement.

DEVIATIONS

One sensor was damaged during testing and could not be measured at 70 °C. Therefore, only 44 data points were used in that particular analysis.

TEST LOCATION

Testing was performed at TESS.

EXPERIMENTAL SETUP

TEST DESCRIPTION

This test shall verify sensor performance in terms of temperature accuracy.

Test Category	Description/Criteria	Measurement
	Resistance @ $0^{\circ}C = 7278 - 7428 \Omega$	Resistance (Ω)
Temperature Accuracy	Resistance @ $40^{\circ}C = 1189 - 1209 \Omega$	Resistance (Ω)
(±0.2 °C)	Resistance @ $70^{\circ}C = 391.8 - 397.2 \Omega$	Resistance (Ω)

SUPPORTED EQUIPMENT AND MATERIALS

- 1. Constant Temperature Bath System:
 - a. A 3M Novec 7200 Bath (asset number 1436) suitable for use at 0°C 70°C.
 - b. Agilent Autoranging Microvolt Digital Multimeter (asset number 3367) with calibration traceable to NIST.
 - c. Check resistor with calibration traceable to NIST.
 - d. Temperature bath setup probe Fluke 5616-12 (asset number 32175) with calibration traceable to NIST.
 - e. Measurement cables suitable for use with product.

ORIGIN OF SAMPLES

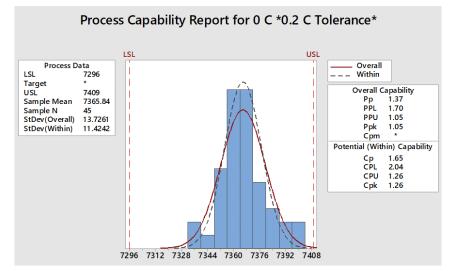
Samples were built according to the normal TEMP-N-050 process, but with an attached Temporary Deviation Authorization stating that the parts would be handed over to R&D prior to the final labeling and packaging steps. Three lots of 15 parts each were used for the test. The corresponding work order numbers were 59300, 59301, and 59302.

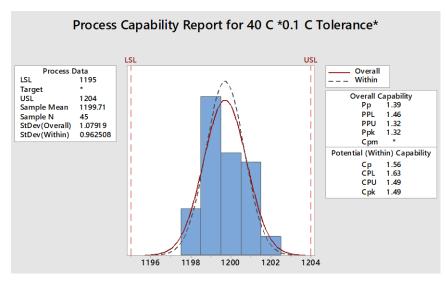
PROCEDURE

- 1.0 3M Novec Bath set to 0 °C or adjust and calibrate one according to SOP900-1027.
- 2.0 Connect the sensor to the Ohmmeter using a 2-pin Molex adaptor cable.
- 3.0 Place the sensor in the holding fixture and orient the flow path to the direction of fluid flow in the bath. Immerse the bottom part of the sensors in the fluid, but leave the upper portion out of the bath.
- 4.0 Wait for the resistance reading to settle, then record the measured resistance. This may take several minutes.
- 5.0 Repeat 2.0 through 4.0 for all sensors.
- 6.0 Recalibrate the bath to 40 °C and repeat all steps.
- 7.0 Recalibrate the bath to 70 °C and repeat all steps.

PASS / FAIL CRITERIA

Test Category	Description/Criteria	Lower Limit	Nominal	Upper Limit	Cpk
	Resistance @ $0^{\circ}C = 7315 - 7391 \Omega$	7278	7353	7428	0.85
Temperature	Resistance @ $40^{\circ}C = 1195 - 1204 \Omega$	1189	1200	1209	0.85
Accuracy	Resistance @ $70^{\circ}C = 393.1 - 395.8 \Omega$	391.8	394.5	397.2	0.85


RESULTS


In the 0 °C bath, 45 of 45 sensors measured within the 0.2 °C acceptable range of 7278 Ω - 7428 Ω , and 42 of 45 sensors measured within the tighter 0.1 °C range of 7315 Ω - 7391 Ω .

In the 40 °C bath, 45 of 45 sensors measured within the tighter 0.1 °C range of 1195 Ω - 1204 Ω .

In the 70 °C bath, 44 of 44 sensors measured within the tighter 0.1 °C range of 393.5 Ω - 395.8 Ω .

Capability analysis on these measurements revealed that the current thermistor manufacturing process and testing regimen is quite capable of consistently delivering sensors meeting the \pm 0.2 °C accuracy limit. Figures 1, 2, and 3 below represent the capability analysis from Minitab for measurements at 0 °C, 40 °C, and 70 °C respectively. Note that the tolerance used in Figures 1 & 3 is the full range, while Figure 2 uses the tighter \pm 0.1 °C tolerance. All three charts show Cpk numbers of 1.26 and greater. The measurements at 40 °C actually have the highest Cpk value despite using the tighter tolerance. This is a feature of the thermistor testing regimen, which requires very high accuracy in the middle of the range in order to maintain acceptable accuracy at the edges of the range.

8.2.2 Conclusion: All sensors were within the thermistor specification of ± 0.2 °C from 0 °C to 70 °C, validating the accuracy claim

8.3 Shelf life of 5 years and Gamma Compatibility

- 8.3.1 Real Time Aged and Gamma Irradiated Sensor Accuracy Testing
 - 8.3.1.1 Procedure- 15x temperature sensors from Lot# 15L29128 that were stored on the shelf under ambient conditions for 2 years, gamma irradiated with a dose of 60-77 kGy (Certificate in Appendix H), and then stored in the same conditions for 3+ more years were tested for accuracy at 2, 10, 20, 50, and 70°C. The sensors were submerged in a calibrated bath, which controlled the temperature setpoint. The raw resistance readings were measured with a calibrated multimeter and then converted to degrees Celsius using the Steinhart-Hart equation. The temperature reading and error for each point are reported here.
 - 8.3.1.2 Calibrated Equipment:

Device	Manufacturer	Model	Serial Number	Last Calibration Date
Digital Multimeter	Keithley	197A	3201	5/2/2020
Precision Bath	TE	MEAS	2617	7/28/2020
Precision Bath Probe	TE	MEAS	2925	7/28/2020

8.3.1.3 Acceptance Criteria: All sensors within accuracy specification:

0°C to 2°C: ± 0.5°C 2°C to 50°C: ± 0.2°C 50°C to 70°C: ± 0.5°C

	2°C		10	°C	20°C		50°C		70°C	
Sensor	Temp °C	Error °C								
1	2.11	0.11	9.86	-0.14	19.86	-0.14	49.83	-0.17	69.80	-0.20
2	1.91	-0.09	10.11	0.11	19.93	-0.07	49.88	-0.12	70.02	0.02
3	1.90	-0.10	9.91	-0.09	19.92	-0.08	49.90	-0.10	69.90	-0.10
4	1.96	-0.04	9.97	-0.03	19.98	-0.02	49.96	-0.04	69.98	-0.02
5	1.85	-0.15	9.88	-0.12	19.96	-0.04	49.84	-0.16	69.90	-0.10
6	1.86	-0.14	9.85	-0.15	19.92	-0.08	49.83	-0.17	70.00	0.00
7*	1.79	-0.21	9.79	-0.21	19.78	-0.22	49.73	-0.27	69.68	-0.32
8	1.93	-0.07	9.94	-0.06	19.96	-0.04	49.94	-0.06	70.13	0.13
9	2.00	0.00	9.91	-0.09	19.92	-0.08	49.91	-0.09	69.96	-0.04
10	2.04	0.04	9.91	-0.09	19.93	-0.07	49.92	-0.08	69.91	-0.09
11	1.89	-0.11	9.97	-0.03	19.95	-0.05	49.93	-0.07	69.91	-0.09
12	2.07	0.07	9.94	-0.06	19.97	-0.03	49.91	-0.09	69.97	-0.03
13	1.91	-0.09	9.94	-0.06	19.99	-0.01	49.92	-0.08	70.07	0.07
14	1.98	-0.02	10.11	0.11	19.95	-0.05	49.93	-0.07	69.97	-0.03
15	1.92	-0.08	9.93	-0.07	19.96	-0.04	49.94	-0.06	69.96	-0.04

8.3.1.4 Data Summary:

*One out of the 15 sensors was marginally outside its specification. Based on the consistent results of the other sensors, sensor #7 is considered to be an outlier that does not reflect the typical performance of a temperature sensor post 5 year shelf life or gamma irradiation.

8.3.1.5 Conclusion: 14/15 temperature sensors were within PendoTECH's accuracy specification. The one sensor not within specification is considered to be an outlier, thus validating post 5-year shelf accuracy and post gamma irradiation accuracy for PendoTECH temperature sensors.

- 8.3.2 Real Time Aged and Gamma Irradiated Sensor Leak Testing:
 - 8.3.2.1 Procedure- The same 15x real time aged and gamma irradiated temperature sensors used for the accuracy testing above were also subjected to leak testing. One at a time the sensors were connected a PendoTECH custom test rig, where 60 psi was applied to the system. The sensor was then isolated and the pressure drop over the next 90 seconds was measured. The pressure decay is reported below.
 - 8.3.2.2 Calibrated Pressure Gauge- Model: Druck DPI 104 S/N: 5380820 (Cert in Appendix J)
 - 8.3.2.3 Acceptance criteria- Pressure decay less than 0.03 psi/sec

Sensor	Initial Pressure (psi)	Final Pressure (psi)	ΔP (psi)	Pressure Decay (psi/sec)
1	60.21	60.16	0.05	0.0006
2	60.09	60.03	0.06	0.0007
3*	60.12	57.86	2.26	0.0251
4	60.15	60.08	0.07	0.0008
5	60.12	60.05	0.07	0.0008
6	60.11	60.05	0.06	0.0007
7	60.2	60.14	0.06	0.0007
8	60.16	60.1	0.06	0.0007
9	60.15	60.06	0.09	0.0010
10	60.16	60.08	0.08	0.0009
11	60.14	60.06	0.08	0.0009
12	60.15	60.07	0.08	0.0009
13	60.13	60.07	0.06	0.0007
14	60.15	60.06	0.09	0.0010
15	60.11	60.04	0.07	0.0008

8.3.2.4 Data Summary:

*Although in specification, a liquid leak check was performed to double check sensor integrity since the pressure decay was larger than all the other samples. The sensor was confirmed to not leak any liquid.

8.3.2.5 Conclusion: No leaks were identified, validating sensor integrity post gamma irradiation and 5year shelf life

8.4 X-ray Compatibility

- 8.4.1 Post X-ray Functionality Testing
 - 8.4.1.1 Procedure: 29x Conductivity sensors from 3 different lots (CONDS-N-025 from Lot numbers 0222442687, 0222742463, and 0222589479), which use the same thermistor as PendoTECH's single use temperature sensors, were tested for temperature accuracy across their full range of 0-70°C. Half of the sensors were X-ray irradiated with a dose >50 kGy (Certificate in Appendix K), and the other half were not irradiated to act as a control group. The sensors were tested at the following temperature test points: 2, 10, 20, 50 and 70°C. The sensors were submerged in a calibrated temperature bath to control the temperature setpoint as the raw resistance readings were measured with a calibrated multimeter. The temperature reading and error for each test point are reported here.

8.4.1.2 Calibrated Equipment:

Device	Manufacturer	Model	Serial Number	Last Calibration Date
Digital Multimeter	Keithley	197A	3413	4/1/2022
Precision Bath	TE	MEAS	3045	1/28/2022
Precision Bath Probe	TE	MEAS	2924	1/28/2022

8.4.1.3 Acceptance Criteria:

All Sensor's within PendoTECH Temperature Sensor Accuracy Specification:

 0° C to 2° C: $\pm 0.5^{\circ}$ C; 2° C to 50° C: $\pm 0.2^{\circ}$ C; 50° C to 70° C: $\pm 0.5^{\circ}$ C

8.4.1.4 Data Summary:

Serial			Temperature Setpoint (°C)											
Number	Condition	2	2	1	0	2	0	5	0	7	0			
Number		Reading (°C)	Error (°C)	Reading (°C)	Error (°C)	Reading (°C)	Error (°C)	Reading (°C)	Error (°C)	Reading (°C)	Error (°C)			
1	Control	1.95	0.05	9.96	0.04	19.97	0.03	49.90	0.10	69.85	0.15			
2	Control	1.96	0.04	9.97	0.03	20.00	0.00	49.95	0.05	69.90	0.10			
4	Control	1.95	0.05	9.94	0.06	19.97	0.03	49.97	0.03	69.92	0.08			
5	Control	1.95	0.05	9.94	0.06	19.98	0.02	49.96	0.04	69.94	0.06			
11	Control	1.94	0.06	9.92	0.08	19.96	0.04	49.95	0.05	69.96	0.04			
14	Control	1.94	0.06	9.93	0.07	19.97	0.03	49.97	0.03	69.93	0.07			
18	Control	1.94	0.06	9.92	0.08	19.96	0.04	49.97	0.03	69.90	0.10			
19	Control	1.94	0.06	9.93	0.07	19.97	0.03	49.96	0.04	69.97	0.03			
20	Control	1.95	0.05	9.94	0.06	19.96	0.04	49.89	0.11	69.87	0.13			
22	Control	1.91	0.09	9.93	0.07	19.95	0.05	49.97	0.03	69.87	0.13			
25*	Control	1.60	0.40	9.50	0.50	19.54	0.46	49.95	0.05	69.91	0.09			
27	Control	1.94	0.06	9.91	0.09	19.96	0.04	50.00	0.00	69.92	0.08			
28	Control	1.95	0.05	9.94	0.06	19.99	0.01	49.96	0.04	69.93	0.07			
30	Control	1.95	0.05	9.94	0.06	19.97	0.03	49.96	0.04	69.93	0.07			
6	X-ray	1.94	0.06	9.96	0.04	19.98	0.02	49.96	0.04	69.90	0.10			
7	X-ray	1.93	0.07	9.94	0.06	19.95	0.05	49.94	0.06	69.99	0.01			
8	X-ray	1.87	0.13	9.90	0.10	19.90	0.10	49.88	0.12	69.84	0.16			
9	X-ray	1.97	0.03	9.94	0.06	19.97	0.03	49.97	0.03	69.91	0.09			
10	X-ray	1.97	0.03	9.92	0.08	19.95	0.05	49.97	0.03	69.91	0.09			
12	X-ray	1.91	0.09	9.94	0.06	19.95	0.05	49.95	0.05	69.95	0.05			
13	X-ray	1.95	0.05	9.94	0.06	19.98	0.02	49.93	0.07	69.95	0.05			
15	X-ray	1.91	0.09	9.94	0.06	19.95	0.05	49.96	0.04	69.91	0.09			
16	X-ray	1.94	0.06	9.94	0.06	19.94	0.06	49.90	0.10	69.90	0.10			
17	X-ray	1.94	0.06	9.94	0.06	19.95	0.05	49.93	0.07	69.87	0.13			
21	X-ray	1.91	0.09	9.94	0.06	19.96	0.04	49.96	0.04	69.95	0.05			
23	X-ray	1.91	0.09	9.93	0.07	19.94	0.06	49.98	0.02	69.95	0.05			
24	X-ray	1.90	0.10	9.92	0.08	19.93	0.07	49.93	0.07	69.91	0.09			
26*	X-ray	1.72	0.28	9.61	0.39	19.67	0.33	49.91	0.09	69.81	0.19			
29	X-ray	1.94	0.06	9.93	0.07	19.94	0.06	49.95	0.05	69.90	0.10			

*Two sensors, sensor#25 (control) and sensor#26 (X-ray irradiated) were out of specification. These sensors were then re-tested, and both reported extremely high resistance values, indicating an open circuit. Therefore, these sensors were damaged during the initial exposure to the water bath, likely from mishandling, and thus their results should be omitted from the X-ray compatibility analysis.

8.4.1.5 Conclusion: With the exception of the two outliers described in the footnote, all of the sensors, both control and x-ray irradiated, were within PendoTECH's temperature sensor accuracy claim, thus validating the performance of PendoTECH single use temperature sensors post x-ray irradiation.

- 8.4.2 Post X-ray Integrity Testing
 - 8.4.2.1 Procedure: The integrity of 14x Conductivity sensors from 3 different lots (CONDS-N-025 from Lot #'s 0222442687, 0222742463, and 0222589479) was challenged following exposure to an X-ray Irradiation dose >50kGy (Certificate in Appendix K). All sensors were evaluated with a leak test that consisted of a 90 second pressure decay test at 60 psi as well as a visual inspection for leaks using soapy water.
 - 8.4.2.2 Calibrated Pressure Gauge: Model# DigiSense, Serial# 1912310225, Last Cal: 8/4/2021 (Cert in Appendix K)
 - 8.4.2.3 Acceptance Criteria: Pressure Decay less than 0.03psi/second and no visual detection of leaks
 - 8.4.2.4 Data Summary:

			Post X-ray Leak F	lesults		
Part Number	Lot Number	Serial Number	Initial Pressure (psi)	Final Pressure (psi)	ΔΡ	Pressure Decay (psi/sec)
CONDS-N-025	222442687	6	59.99	59.95	-0.040	-0.0004
CONDS-N-025	222442687	7	60.14	60.08	-0.060	-0.0007
CONDS-N-025	222442687	8	59.99	59.95	-0.040	-0.0004
CONDS-N-025	222442687	9	59.95	59.92	-0.030	-0.0003
CONDS-N-025	222442687	10	60.10	60.04	-0.060	-0.0007
CONDS-N-025	222742463	12	60.01	59.96	-0.050	-0.0006
CONDS-N-025	222742463	13	59.98	59.94	-0.040	-0.0004
CONDS-N-025	222742463	15	60.06	59.99	-0.070	-0.0008
CONDS-N-025	222742463	16	60.14	60.12	-0.020	-0.0002
CONDS-N-025	222742463	17	60.17	60.17	0.000	0.0000
CONDS-N-025	222589479	21	60.00	59.93	-0.070	-0.0008
CONDS-N-025	222589479	23	60.05	59.99	-0.060	-0.0007
CONDS-N-025	222589479	24	60.08	60.04	-0.040	-0.0004
CONDS-N-025	222589479	26	60.10	60.07	-0.030	-0.0003
CONDS-N-025	222589479	29	60.11	60.06	-0.050	-0.0006

8.4.2.5 Conclusion: No leaks were identified in any of the leak testing and all pressure decay tests were within the acceptable limit, thus validating the sensor integrity of PendoTECH Single Use Temperature Sensors post X-ray Irradiation.

9 APPENDICES

9.1 Appendix A- Assembled Sensor Certificate: Class VI post 40kGy gamma irradiation

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Te	chnical Initiation	4/12/2019
Address	174 Nassau Street Suite 256	Te	chnical Completion	5/29/2019
	Princeton, NJ 08542	Re	port Date	6/3/2019
Contact	Dennis Annarelli	An	ended Report Date	6/17/2019
P.O. Number	2013094	Fin	al GLP Report	19-00538-G1
Test Article	Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation	Ratio	60 cm²/20 mL	
Lot/Batch #	1171477	Vehicles	USP 0.9% Sodium C Injection (NaCl), Cott (CSO), 1 in 20 Ethan (EtOH), and Polyethy 400 (PEG)	onseed Oil ol in NaCl
Study	Class VI Test - USP (With 14 Day Subcutaneous Implant)	Extraction Conditions	70 ± 2 °C for 24 ± 2 h	ours

REFERENCES:

The study was conducted based upon the following references:

United States Pharmacopeia 41, National Formulary 36, 2018. <88> Biological Reactivity Tests, In Vivo.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE:

The extraction conditions were performed as stated above. The test article extracts and corresponding blanks were injected systemically and intracutaneously in mice and rabbits, respectively. The injections were in the amounts and routes set forth by USP, including the further dilution of the extracts prepared with PEG. The animals were observed for signs of toxicity and skin reactivity for up to 72 hours post treatment. In addition, the test article was implanted subcutaneously into rats for 14 days and observed macroscopically for signs of hemorrhage, necrosis, discoloration, encapsulation, and infection.

RESULTS AND CONCLUSION:

None of the mice injected with the test article extracts exhibited any signs of toxicity in the Systemic Injection Test. In addition, none of the rabbits injected intracutaneously with the test article extracts exhibited any signs of erythema, or edema in both test and control sites and no signs of clinical toxicity. In both the Systemic and intracutaneous Tests, the controls were normal through 72 hours. Also, the implant sites exhibited no significant signs of hemorrhage, necrosis, discoloration, encapsulation, or infection compared with the control sites.

The test article meets the requirements of the guidelines for the Biological Test for Plastics, Class VI - 70°C.

AUTHORIZED PERSONNEL:

adden, B.S. Colin Mo

Quality Assurance

<u>D. Rodini Hon</u> Radhika Devalaraja, Ph.D. Study Director

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

FINAL GLP REPORT: 19-00538-G1 AMENDED

CLASS VI TEST – USP (WITH 14 DAY SUBCUTANEOUS IMPLANT)

Test Article Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

> 21 CFR Part 58 Compliance Good Laboratory Practice for Nonclinical Laboratory Studies

> > Final Report Date 6/3/2019

Amended Final Report Date 6/17/2019

Study Director Radhika Devalaraja, Ph.D.

Sponsor PendoTECH 174 Nassau Street Suite 256 Princeton, NJ 08542

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

Class VI Test – USP (With 14 Day Subcutaneous Implant) Final GLP Report: 19-00538-G1 Amended Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

STUDY SUMMARY

The USP 0.9% Sodium Chloride for Injection (NaCl), Cottonseed Oil (CSO), 1 in 20 Ethanol in NaCl (EtOH), and Polyethylene Glycol 400 (PEG) extracts of the test article, Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation, following Intracutaneous Injection in rabbits, Systemic Injection in mice, and the test article, following Subcutaneous Implantation in rats, did not produce a biological response.

Based on the criteria of the protocol and the USP guidelines for Class VI Plastics - 70 °C, the test article meets the requirements of the test.

www.toxikon.com

Page 6 of 30 Toxikon Use Only: 000 τοχικοη Class VI Test - USP (With 14 Day Subcutaneous Implant) Final GLP Report: 19-00538-G1 Amended Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

QUALITY ASSURANCE STATEMENT

The Quality Assurance Unit conducted inspections on the following dates. The findings were reported to the Study Director and to Toxikon's Management.

The final report was reviewed to assure that the report accurately describes the methods and standard operating procedures. The reported results accurately reflect the raw data of the nonclinical study conducted per the protocol.

Phase	Inspection Date	Date Reported to Study Director	Date Reported to Management
EXPLANT	5/29/2019	5/29/2019	5/29/2019
DATA	6/3/2019	6/3/2019	6/3/2019
FINAL REPORT	6/3/2019	6/3/2019	6/3/2019
AMENDED REPORT	6/17/2019	6/17/2019	6/17/2019

in McJule Colin McFadden, B.S.

Quality Assurance

6/17/19 Date

www.toxikon.com

Page 7 of 30 Toxikon Use Only: 000 TOXIKON Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

GLP COMPLIANCE STATEMENT

This study meets the technical requirements of the protocol.

This study was conducted in compliance with the current U.S. Food and Drug Administration 21 CFR, Part 58 Good Laboratory Practices for Nonclinical Laboratory Studies.

The sections of the regulations not performed by or under the direction of Toxikon Corporation, exempt from this Good Laboratory Practice Statement, included characterization and stability of the test article, 21 CFR, Part 58.105, and its mixture with carriers, 21 CFR, Part 58.113.

SIGNATURES

	Signature Information
Protocol Number	p19-0161-00b
Study Director	Radhika Devalaraja, Ph.D.
Study Supervisor	Catherine Maciaszek, B.S., LAT
Company	Toxikon Corporation

VERIFICATION DATES

The study initiation day is the date the protocol is signed by the Study Director.

	Verifica	tion Dates
Test Article Receipt	1/23/2019	
Project Log	2/11/2019	
Study Initiation	3/25/2019	
Study Completion	6/3/2019	

D. Rodhike

Radhika Devalaraja, Ph.D. Study Director

6/17/2019 Date

www.toxikon.com

Page 8 of 30 Toxikon Use Only: 000

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

1020				
4.50 -		CT	C C D	10
		31	FER	13

ú.

Gamma Process Run ID 117005A

Product Code	Product Lot Number	Quantity	
40-60 SAMPLES	0020499769	Guantity	UOM
Cust Item ID: CAT, NO. CDRF1TN05		1	CS
40-60 SAMPLES	0021039608	54	12.2
Cust Item ID: CAT. NO. CDRF4HN05		1	CS
40-60 SAMPLES	0022897176	82	CS
Cust Item ID: CAT. NO. CDRM8HN05		1	CS
40-60 SAMPLES	MGBF620/MGDM180	23	
Cust Item ID: 20277484/00123958DR		1	CS
40-60 SAMPLES	NA		
Cust Item ID: PENDOTECH POLYSULFONE SENSORS		1	CS

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019	10:07:00 pm	Approx. Downtime (hours):	3.82
Processing Run End Date/Time:	21-Jan-2019	04:04:00 am		(0.0000)
Minimum Specified Dose (kGy)	: 40.0		Minimum Delivered Dose (kGy):	42.1
Maximum Specified Dose (kGy): 60.0		Maximum Delivered Dose (kGy):	50.8
Product meets Cust	omer specificati	ions; zero nonco	phormities occurred during this irradiation run.	
Reviewed and F. Co., 12		Signature	Manifest	
Reviewed and E-Signed B	y .		Signed On 1/21/2019 at 8:	40 414
	S& RC Ana	(vet)		
. Francine Maranda (C Document Content Revisio		lyst)	UTC / GMT Offset (hh.mm) -5:0	
. Francine Maranda (C		lyst)		

					Da	te Prepared: 1	Date Prepared: 1/21/2019 8:47:34AM
issing ator / A	Processing Location: Irradiator / Method:	Northi 126, N	Northborough 126, Nordion Cobalt-60 Irradiator #126, ON-STD	tor #126, ON	STD		
Seq	g <u>Coordinate</u>	nate	<u>Barcode ID</u>	Insert	Instrument	Dose (kGv)	Final Dose (KGV)
se Me	Final Dose Measurements						
÷	1 0C1		0BR600288204	TH0049	0484	28.7	42.1
			0BR600257802	TH0048	0481	13.4	
	2 TA5		0BR600288439	TH0049	0484	34.4	50.5
			0BR600257878	TH0048	0481	16.1	
	3 TE5		0BR600288499	TH0049	0484	34.7	50.8
			0BR600257886	TH0048	0481	16.1	
	Minim	num Dos	Minimum Dose for Record (kGy):	4	42.1		
	Maxin	mum Do	Maximum Dose for Record (kGy):	5	50.8		
					Signature Manifest	Aanifest	
	¢9	Prepa	Prepared By: Baez, Hector (Material Handler)	Handler)			Signed On 1/21/2019 at 6:23 AM UTC/ GMT Offset (Mixim): -5:00
	\$		Approved By: Francine Maranda (QS & RC Analyst)	& RC Analy	(St)		Signed On 1/21/2019 at 8:47 AM UTC / GMT Offset (hhrmm): -5:00

9.2 Appendix B- Assembled Sensor Certificate: USP 661 post gamma irradiation

	0	X		K	0		100000
--	---	---	--	---	---	--	--------

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technic	al Initiation	11/18/2015
Address	174 Nassau Street	Technic	al Completion	11/20/2015
	Ste. 256			
	Princeton, New Jersey 08542			
Contact	Dennis Annarelli	Report		11/24/2015
P.O. Number	2009258	Final No	on-GLP Report	15-04024-N1
	PendoTECH Single Use			
Test Article	Conductivity Sensor	Ratio	120 cm²/20 mL	
	Post Gamma Irradiation			
Lot/Batch #	15B89295	Vehicle	Purified Water	
Study	Physicochemical Test for Plastics – USP	Extraction Conditions	70 ± 2°C for 24	± 2 hours
Comments	Cable not included in extraction.			

REFERENCES: The study was conducted based upon the following references: United States Pharmacopeia 38, National Formulary 33, 2015. Monograph <661> Containers, Physicochemical Tests–Plastics.

ISO/IEC 17025, 2005, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article was extracted in purified water after rinsing in purified water. The following tests were conducted in order to determine physical and chemical properties of the test article's extracts: Nonvolatile Residue, Residue on Ignition, Heavy Metals, and Buffering Capacity.

RESULTS:

TEST	ACCEPTABLE LEVEL	TEST RESULT
Nonvolatile Residue	≤ 15 mg	3.5 mg, Meets Criteria
Residue on Ignition*	≤ 5 mg	Not Applicable
Heavy Metals	≤ 1 ppm	> 1 ppm, Does not meet Criteria
Buffering Capacity	≤ 10 mL	0.76 mL, Meets Criteria

*The Residue on Ignition test is only performed if the nonvolatile residue is 5 mg or above.

CONCLUSION: The test article meets criteria of the USP Physicochemical Test for Plastics for nonvolatile residue and Buffering Capacity based upon the methods employed. It does not meet the criteria for Heavy Metals of the USP Physicochemical Test for Plastics based on the method employed.

AUTHORIZED PERSONNEL:

Lakshmi Chandrasekaran, M.S. Quality Assurance

amar Amtul Qamar, M.S. Study Director

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Isomedix Services

Gamma Process Run ID 179365C

Product Code	Product Lot Number	<u>Quantity</u>	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS
GROUP 82	140080 / 85174-0000	2	CS
GROUP 82	622014-0602 / 84931-ENDO	1	CS
GROUP 82	B110032-I / 85048-0000	1	CS
GROUP 82	B110522-I / 86408-0000	1	CS

Processing Run Start Date/Time:	01-Nov-2015	01:31:29 am	Ap	oprox. Downtime (hours):	0.00
Processing Run End Date/Time:	01-Nov-2015	03:25:16 am			
Minimum Specified Dose (kGy):	27.5		Minimum Deli	vered Dose (kGy):	30.1
Maximum Specified Dose (kGy):	45.0		Maximum Del	ivered Dose (kGy):	37.7
Product meets Custon	ner specificati	ons; zero nono	conformities occurred	during this irradiation run.	
		Signature	e Manifest		
Reviewed and E-Signed By				Signed On 11/2/2015 at 1	
Tracy Wild (QS/RC Te	chnician)			UTC / GMT Offset (hh:mm): -5:	00
Document Content Revision:	: 1				
Processing Location:				e and federal regulations (FDA, NF which meets the regularements of F	
STERIS Isomedix Services				SI/AAMI/ISO 11137:2006. STERIS	
23 Elizabeth Drive Chester, NY 10918		these processed I etry system used.		d doses within the precision and a	couracy
Phone: 845-469-4087		cuy system asea.			
Fax: 845-469-7512					
PROC-00034/01354/01369 Last Rev In Rel. 3.6.2.1			Release Date:	02-Apr-2014	Page 1 of

	Tionmon Rimonol I								
rradiator	Irradiator / Method:		239, Nordion Cobalt-60 Irradiator #239, Cont Batch	rradiator #239, Cor	nt Batch				
								Final	
Carrier	Seq	Coordinate	e Batch - Cal Dt	Spectro S/N	Micrometer S/N	ABS	Thick (mm)	Dose (kGy)	Comment
÷	-	5	NR (09/15/2015)	5A3O364003	MX 700989	0.7050	2.748	30.7	
÷	2	8C3	NR (09/15/2015)	5A3O364003	MX 700989	0.7742	3.049	30.1	
÷	e	0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8206	3.228	30.2	
÷	4	101	NR (09/15/2015)	5A3O364003	MX 700989	0.7697	2.877	33.0	
-	9	1CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8630	3.249	32.6	
-	9	TBAEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8840	3.236	34.3	
-	7	TBEEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7782	2.842	34.5	
2	-	OCEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7542	2.962	30.3	
2	8	TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.8315	2.894	37.7	
2	e	TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.8871	3.124	36.9	
MINIM	num Dog	Minimum Dose for Record (kGy):	rd (kGy):	50.1					
Maxin	num Do	Maximum Dose for Record (kGy):		37.7					
Last D	osimeter A	bsorbance Me	Last Dosimérier Absorbance Measurement Date/Time: 11/12	1/12015 & 21:38 AM					
					Signature Manifest	fest			
		5	Prepared By: Zephoni Rose (M:	(Material Handler)			Signed On 11/1/2015 at 4:22 AM UTC / GMT Offeet (hit:mm): -5:00	15 at 4:22 AM mm): -5:00	
		8	Approved By: Tracy Wild (QS/RC Technician) Document Content Revision: 1	S/RC Technician) Revision: 1			Signed On 11/2/2015 at 10:47 AM UTC / GMT Offset ≬htmm): -5.00	15 at 10:47 AM mi): -5:00	

STERIS Isomedix Services Dosimetry Record

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Gamma Process Run ID 179655E

Isomedix Services

Product Code	Product Lot Number	Quantity	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS
GROUP 82	B104620-I / 86635-0000	50	CS
GROUP 85	HM00170-I / 86608-0000	1	CS

Processing Run Start Date/Time:	08-Nov-2015 07:22:48 am	Approx. Downtime (hours):	0.09
Processing Run End Date/Time:	08-Nov-2015 09:28:01 am	1	
Minimum Specified Dose (kGy)	: 27.5	Minimum Delivered Dose (kGy):	30.3
Maximum Specified Dose (kGy): 45.0	Maximum Delivered Dose (kGy):	39.8
Product meets Cust	omer specifications; zero no	nconformities occurred during this irradiation run.	
	Signatur	e Manifest	
Reviewed and E-Signed E		Signed On 11/10/2015 at 3	3:45 PM
Tracy Wild (QS/RC	Technician)	UTC / GMT Offset (hh:mm): -5:	00
Document Content Revisi	on: 1		
Processing Location:		mpliance with applicable state and federal regulations (FDA, NF	
STERIS Isomedix Services	EN/ISO 13485:2003/2012, a	vices under a quality system which meets the requirements of F nd in alignment with EN ANSI/AAMI/ISO 11137:2006. STERIS	Isomedix
23 Elizabeth Drive Chester, NY 10918	certifies that these processe of the dosimetry system use	d Items received the indicated doses within the precision and ac d.	ocuracy
Phone: 845-469-4087	,,,		
Fax: 845-469-7512			

Irradiator / Method: 23 Carrier Seq Coordinate 1 1 0C1 1 2 TBA5 1 2 TBA5 2 1 TBA5 2 1 TBA5 2 1 TBA5 2 2 1 2 2 TBE5 2 2 TBE5	239, Nordion Cobalt-60 Irradiator #239, Cont Batch Date Batch - Cal Dt Spectro S/N Micro NR (09/15/2015) 5A3O364003 MX 7/ NR (09/15/2015) 5A3O364003 MX 7/ NR (09/15/2015) 5A3O364003 MX 7/	rradiator #239, Con <u>Spectro S/N</u> 5A3O364003 5A3O364003 5A3O364003	tt Batch <u>Micrometer S/N</u> MX 700989 MX 700989	ABS 0.7962	Thick (mm) 3.125 3.108	Final Dose (kGy) 30.3	Comment
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Spectro S/N 5A3O364003 5A3O364003 5A3O364003	<u>Micrometer S/N</u> MX 700989 MX 700989	ABS 0.7962	Thick (mm) 3.125 3.108	×.	Comment
- 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		Spectro S/N 5A3O364003 5A3O364003 5A3O364003	Micrometer <u>S/N</u> MX 700989 MX 700989	<u>ABS</u> 0.7962	Thick (mm) 3.125 2.108	ž	Comment
1 001 2 TBA5 1 2 TBA5 2 1 TBA5 2 TBE5 2 TBE5	NR (09/15/2015) NR (09/15/2015) NR (09/15/2015)	5A3O364003 5A3O364003 5A3O364003	MX 700989 MX 700989	0.7962	3.125 2.108	30.3	
- 2 TBA5 - 3 TBE5 2 1 TBA5 2 TBE5 2 TBE5	NR (09/15/2015) NR (09/15/2015)	5A3O364003 5A3O364003	MX 700989		3 108	1 00	
2 TBE5	NR (09/15/2015)	5430364003		0.8975	0,100	38.1	
2 1 TBA5 2 2 TBE5			MX 700989	0.7923	2.818	36.2	
2 TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.7922	2.925	33.8	
	NR (09/15/2015)	5A3O364003	MX 700989	0.8764	3.213	34.2	
	NR (09/15/2015)	5A3O364003	MX 700989	0.8139	3.171	30.7	
3 2 145	NR (09/15/2015)	5A3O364003	MX 700989	0.8954	3.032	39.8	
3 1E5	NR (09/15/2015)	5A3O364003	MX 700989	0.9176	3.131	39.2	
5 1 0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7704	2.963	31.4	
5 2 1A5	NR (09/15/2015)	5A3O364003	MX 700989	0.8998	3.084	38.9	
5 3 1E5	NR (09/15/2015)	5A3O364003	MX 700989	0.9223	3.137	39.5	
6 1 TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.8509	3.033	36.1	
6 2 TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.8184	2.863	37.4	
Minimum Dose for Record (kGy):	cord (kGy):	30.3					
	Maximum Dose for Record (kGy):	39.8					

STERIS Isomedix Services Dosimetry Record

9.3 Appendix C: Assembled Sensor Certificate: ISO 10993-5 post gamma irradiation

TEST RESULT CERTIFICATE

Sponsor Address	PendoTECH 174 Nassau Street	Technical	Initiation Completion	8/18/2015 8/21/2015
	Ste. 256 Princeton, New Jersey 08542	reennear	Completion	0/21/2013
Contact P.O. Number	Dennis Annarelli 2008960	Report Da Final GLP		9/1/2015 15-02864-G1
Test Article	conductivity sensor	Ratio	3 cm ² /mL	
Lot/Batch #	See Attachment A	Vehicle	Serum–Sup (complete) M Essential Me	
Study	L929 Neutral Red Uptake Test (1 Concentration) – ISO	Extraction	24 ± 2 hours	at 37 ± 1 °C
Comments	Per Sponsor request, the test article was e	extracted intact and wires	were excluded	from testing

REFERENCES: The study was based upon the following references: ISO 10993-5, 2009, Biological Evaluation of Medical Devices - Part 5: Tests for In Vitro Cytotoxicity. ISO 10993-12, 2012, Biological Evaluation of Medical Devices - Part 12: Sample Preparation and Reference Materials.

ISO/IEC 17025, 2005, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The biological reactivity of a mammalian cell monolayer, L929 mouse fibroblast, in response to the test article extract was determined. The test article extract was prepared as stated above. Positive control (Natural Rubber) and negative control (Negative Control Plastic) articles and an untreated control were prepared to verify the proper functioning of the test system. The test article and control article extracts were used to replace the maintenance medium of the cell culture. The test article extract was tested at the 100% (neat) concentration. All cultures were incubated in, at least, 6 replicates for 24 to 26 hours, at 37 ± 1 °C, in a humidified atmosphere containing 5 ± 1% carbon dioxide (CO2). The viability of cells following the exposure to the extracts was measured via their capacity to uptake a vital dye, Neutral Red. This dye was added to the cells to be actively incorporated in viable cells. The number of viable cells correlates to the color intensity determined by photometric measurements at 540 nm after extraction

EVALUATION CRITERIA: The viability of cells exposed to the negative control article and positive control article extracts need to be greater and less than 70% of the untreated control, respectively, to confirm the validity of the assay. The test article meets the requirements of the test if the viability % is greater than or equal to 70% of the untreated control.

RESULTS:

	Untreated	Negative	Positive Control	Test Article
	Control	Control	Positive Control	100% (neat)
Average OD	0.532	0.571	0.214	0.541
Viability %	100%	107%	40%	102%

CONCLUSION: The test article meets the requirements of the test and is not considered to have a cytotoxic effect.

AUTHORIZED PERSONNEL:

Elizabeth Hogan, B,S Quality Assurance

Sruthi Sundaram, Ph.D. Study Director

Toxikon Corporation	15 Wiggins Ave.,	Bedford,	MA 01730 U	SA 1.800.4	58.4141 Main:	1,781,275,3330	
		10 1 1 K	A-11-14	- 11-11	11	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	

cs

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

GROUP 69

Isomedix Services

Product Code	Product Lot Number	Quantity	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS

Processing Run Start Date/Time:	01-Aug-2015 09:52:00 pm	Approx. Downtime (hours):	0.15
Processing Run End Date/Time:	01-Aug-2015 11:27:00 pm		
Minimum Specified Dose (kGy):	27.5	Minimum Delivered Dose (kGy):	34.8
Maximum Specified Dose (kGy):	45.0	Maximum Delivered Dose (kGy):	37.8
Product meets Custo	mer specifications; zero nonco	onformities occurred during this irradiation run.	
	Signature	Manifest	
Reviewed and E-Signed By		Signed On 8/3/2015 at 7:51	AM
📄 Maria H Greco (QS/R	C Technician)	UTC / GMT Offset (hh:mm): -4:00	
Document Content Revision	n: 1		
Processing Location: STERIS Isomedix Services 9 Apollo Drive Whippany, NJ 07981 Phone: 973-887-2754 Fax: 973-887-6591	and OSHA) and provide service EN/ISO 13485:2003/2012, and	lance with applicable state and federal regulations (FDA, NRC is under a quality system which meets the requirements of FD/ in alignment with EN ANSI/AAMI/ISO 11137:2006. STERIS is ems received the indicated doses within the precision and accu	A QSR, omedix
PROC-00034/01354/01369 Last Rev In Rel. 3.6.2.1		Release Date: 02-Apr-2014	Page 1 of 1

STERIS Isomedix Services Dosimetry Record Prepared for ADVANCED SCIENTIFICS INC – Process Run ID 75899A Date Prepared: 8/3/2015 7:49:48AM	Processing Location: Whippany Irradiator / Method: 131, Nordion Cobalt-60 Irradiator #131, ON-STD	Image: Concertination Batch-Loal ID; Sector Stru Sector Stru Microminient Stru ABS Thick (mm) Final Dose (KSV) Final Comment 1 2.5.5 NM (05277/2015) 4524039 MX 700997 0.3163 2.836 3.43 2 2.45 NM (05277/2015) 4524039 MX 700987 0.9126 2.826 3.7.8 3 7 7 2.84 0.9126 2.949 37.6 37.6 4 TBAS NM (05277/2015) 4524039 MX 700987 0.8776 2.949 37.6 5 TBAS NM (05277/2015) 4524039 MX 700987 0.8776 2.949 37.6 6 TBAS NM (05277/2015) 4524039 MX 700987 0.8776 37.6 5 TBAS NM (06277/2015) 4524039 MX 700987 0.8776 37.6 5 Minitum Dose for Record (KO): 3.4 37.6 37.6 37.6 Minitum Dose for Record (KO): 3.5 3.5 3.5 3.6 37.6	Comment Lenend: OUT = Calo Doea Out of Limits: PID = Pre-inadiated Dosimeter: GRP = Dosimeter Group
	Location: Method:	eg Coordi 1 2C5 2 2A5 3 2E5 5 TBE5 5 TBE5 6 m Dose for Re imeer Absorbance	

9.4 Appendix D: Assembled Sensor Certificate: Particulates

TEST RESULT CERTIFICATE

Sponsor	PendoTech	Technic	al Initiation	03/05/2019
Address	174 Nassau Street, Ste. 256	Technic	al Completion	03/06/2019
-	Princeton, NJ, 08542, USA			
Contact	Dennis Annarelli	Report I	Date	03/26/2019
P.O. Number	2013020	Final No	n-GLP Report	19-00167-N1
Test Article	PendoTECH Single Use Conductivity	Ratio	Fluid Path	
TOST ATTICIC	Sensors	Ratio	Tiulu Faut	
Lot/Batch #	18G75422, 18B68526, 18E72698,	Vehicle	Durified Mater	
LOUBAICH #	18D71380, 18AG5416	venicie	Purified Water	
Study	Particulate Matter by Light Obscuration of	Extraction	37 ± 2 °C for 24 ±	2 hours
Study	Extract from a Solid Test Article	Conditions	31 ± 2 C for 24 ±	z nours
Comments	None			

REFERENCES: The study was conducted based upon the following references: United States Pharmacopeia 41, National Formulary 36, 2018. <788> Particulate Matter In Injections. Particle Measuring System. Operations Manual for "SLS-FAMILY Syringe Liquid Sampler" publication no. 1000014034, Rev G. Particle Measuring System. Operations Manual for "LiQuilaz® -E20 Particle Counter" publication no. M10179, Rev G. Sponsor specifications.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article was extracted by filling the fluid path of all the devices (connected in series with tubing) with purified water at 37 ± 2 °C for 24 ± 2 hours. A control solution of purified water in the tubing only was also collected for analysis. Finally, a control solution of purified water was also collected. The resulting extracts were analyzed using the Particle Measuring System, Automated Parenteral Syringe Sampler (APSS)-2000. Particles were analyzed using channel settings of 10 and 25 μ m. The differential count results were recorded directly from the instrument.

CALCULATIONS: Calculation of number of particles (of each size) per device :

$$Particles per unit = \frac{Ta*Pa-Tb*P_c}{N_{dev}}$$

Where:

Ta = Total Volume of Test Articles + Tubing = 71 mL

Tb = Amount of volume corresponding to Tubing = 60 mL

- Pa = Number of particles / mL obtained in the extraction of Test Articles + Tubing
- Pc = Number of particles / mL obtained in the tubing control experiment

Ndev = Number of devices = 10

> 15 Wiggins Avenue, Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

τοχικοη

Particulate Matter by Light Obscuration of Extract from a Solid Test Article Final Non-GLP Report: 19-00167-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors

RESULTS: The results are presented in Table 1 and Table 2.

	Instrumenta			
Sample ID	Replicate	(Particles per mL)		
		≥ 10 µm	≥ 25 µm	
	1	Discarded Sample		
	2	0.2000	0.2000	
Control	3	0.6000	0.0000	
(Purified Water)	4	0.2000	0.0000	
	5	0.2000	0.4000	
	Average	0.3000	0.1500	
	1	Discarded Sample		
	2	5.4000	0.2000	
	3	8.0000	0.4000	
Tubing Control	4	6.0000	0.8000	
	5	6.4000	0.2000	
	Average	6.4500	0.4000	
	1	Discarded Sample		
	2	5.6000	0.8000	
Test Article	3	6.2000	1.0000	
+	4	8.4000	1.2000	
Tubing	5	6,6000	0.2000	

Each replicate was a 5 mL aliquot of the sample.

TABLE 2 Particles per unit of device Calculated Results Del ID Replicate (Particles per unit) > 10 um

Sample ID	Replicate	(
Sample ID	Replicate	<mark>≥ 10 µm</mark>	≥ 25 µm
	1	Discarde	d Sample
Test Article	2	7.3600	4.4800
(corrected for	3	0.0000	4.7000
the control)	4	23.6400	3.7200
	5	8.4600	0.2200
	Average	8.8700	3.2800

CONCLUSION: The test article contained the amounts of each particle size as presented in Table 2, when tested based on the methods employed.

AUTHORIZED PERSONNEL: mar

Vanessa M. Dubay, B.S. Quality Assurance

Edvin Klosi, Ph.D. Study Director

9.5 Appendix E: Assembled Sensor Certificate: Bioburden

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	1/21/2019
Address	174 Nassau Street	Technical Completion	1/28/2019
ludioco	Ste.256		
	Princeton, New Jersey 08542		
Contact	Dennis Annarelli	Report Date	2/1/2019
P.O. Number	2013020	Final Non-GLP Report	19-00165-N2
Test Article	PendoTECH Single Use Conductivity Ser	nsors	
		13013	
Lot/Batch #	18H78452, 18K81350, 17M65167		
Study	Aerobic, Anaerobic, Heat Shock and Yea	st & Mold Bioburden by Membrane Filtratic	on – AAMI
	One (1) unit from each of the three (3) lots supplied by sponsor was tested. Refer to Toxikon Project Number 19-00165-N1 for bioburden validation.		

REFERENCES: The study was conducted based upon the following references: ANSI/AAMI/ISO 11137–1, 2006/(R) 2010 & A1: 2013 (Consolidated Text) Sterilization of Health Care Products – Radiation – Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. ANSI/AAMI/ISO 11737–1:2018 Sterilization of Health Care Products – Microbiological Methods – Part 1: Determination of the Population of Microorganisms on Product.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The Sponsor submitted three (3) lots, one (1) unit from each lot was tested for total bioburden. Each test article was individually placed in a sterile bag and the fluid pathway was flushed with 100 mL of sterile Fluid D. The bag was shaken for 30 seconds. A volume of 96 mL of Fluid D was recovered and four (4) equal aliquots were made. One (1) aliquot was heat shocked at 80 °C for 15 minutes, then allowed to cool down. Following membrane filtration (4 × 24 mL) and wash with 10 mL of Phosphate Buffered Saline (PBS), the filters (one per plate) were aseptically placed onto Trypticase Soy Agar (TSA) plates and incubated aerobically and anaerobically at 30–35 °C for 4 days and onto Sabouraud Dextrose Agar (SDA) plates and incubated aerobically at 20–25 °C for 7 days. Samples of Fluid D and PBS, used as negative controls, were similarly filtered, plated and incubated. Colony Forming Units (CFU) were determined for each filter. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

RESULTS:

	Bi	oburden Results		
	CFU/Plate			
Test Article	TSA (Aerobic)	TSA (Anaerobic)	TSA (Heat Shock)	SDA (Yeast & Mold)
18H78452	NOC	NOC	1 Cream CI, FL	NOC
18K81350	1 Yellow CI, RA 1 Yellow IR, FL	NOC	NOC	NOC
17M65167	1 Cream CI, FL	NOC	NOC	NOC
Average CFU/Plate	1.0	0	0.3	0
CFU/Device	4	<1	1	< 1

TABLE 1:

CFU = Colony Forming Units

NOC = No Observable Colonies = $< 1 \equiv 0$ for calculations

CI = Circular, FL = Flat, IR = Irregular, RA = Raised

Average CFU/Plate = Sum of CFU/plates ÷ Number of Plates

CFU/Device = <u>Average CFU/Plate × Fluid D used (100 mL)</u> Volume Filtered (24 mL)

Corrected CFU/Device = Total CFU/Device × Recovery Factor = 5 × 2.5 = 13

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

G

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	1/21/2019
Address	174 Nassau Street	Technical Completion	1/25/2019
	Ste.256		
	Princeton, New Jersey 08542		
Contact	Dennis Annarelli	Report Date	2/1/2019
P.O. Number	2013020	Final Non-GLP Report	19-00165-N1
Test Article	PendoTECH Single Use Conductivity Sensors		
Lot/Batch #	18H78452, 18K81350, 17M65167		
Study	Bioburden Validation - Spore Inoculation - AAM	ΛI	
Comments	One (1) unit from each of the three (3) lots supp	lied by sponsor was tested.	

REFERENCES: The study was conducted based upon the following references: ANSI/AAMI/ISO 11137–1, 2006/(R) 2010 & A1: 2013 (Consolidated Text) Sterilization of Health Care Products – Radiation – Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. ANSI/AAMI/ISO 11737–1:2018 Sterilization of Health Care Products – Microbiological Methods – Part 1: Determination of the Population of Microorganisms on Product.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The Sponsor submitted three (3) units for bioburden validation by spore inoculation. Each test article was individually placed in a sterile bag and inoculated with 0.1 mL of *Bacillus atrophaeus* (*B. atrophaeus*) and allowed to dry for thirty (30) minutes. A volume of 100 mL of Fluid D was used to flush each test article. The bag was shaken for 30 seconds. The recovered extract (96 mL) was then membrane filtered. Following membrane filtration (2 × 48 mL) and wash with 10 mL of Phosphate Buffered Saline (PBS), the filters were aseptically placed onto Trypticase Soy Agar (TSA) plates and incubated aerobically at 30–35 °C for 4 days. For the positive control, 0.1 mL of *B. atrophaeus* was added to a sterile bag and allowed to dry for thirty (30) minutes. A volume of 100 mL of Fluid D was added, bag was shaken for 30 seconds, membrane filtered (2 × 48 mL), washed with 10 mL of PBS, and aseptically placed onto TSA plates and incubated aerobically at 30–35 °C for 4 days. Samples of Fluid D and PBS, used as negative controls, were similarly filtered, plated and incubated. The spore suspension concentration was verified by plate count utilizing membrane filtration method with 0.1 mL per plate, in duplicate, and incubated aerobically at 30–35 °C for 4 days.

RESULTS:

	CFU/Plate/0.1 mL		Average	Challenge
Concentration	1	2	CFU/Plate	Suspension (CFU/0.1 mL)
Neat	75	79	77.0	77.0

TABLE 1:

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate ÷ Number of Plates Challenge Suspension (CFU/0.1 mL) = Average CFU/Plate = Population Inoculated

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

τοχικοη

Bioburden Validation – Spore Inoculation – AAMI Final Non-GLP Report: 19-00165-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors

TABLE 2:
Bioburden Validation
Test Article Results

		CFU	Plate						The A SPACE
ТА	1	TA	2	ТА	4 3	Average CFU/Plate	CFU/Device	% Recovery	Recovery Factor
16	13	5	11	22	23	15.0	31	40%	2.5

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate ÷ Number of Plates CFU/Device (Population Recovered) = Average CFU/Plate × (Volume of Fluid D used ÷ Volume Filtered)

% Recovery = (Population Recovered ÷ Population Inoculated) × 100

Recovery Factor = 100% ÷ Percent Recovery

TABLE 3: **Bioburden Validation**

Positive Control Results

CFU	Plate	Average CFU/Plate	CFU/Device	% Recovery	Recovery Factor
32	36	34.0	71	92%	1.1

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate + Number of Plates CFU/Device (Population Recovered) = Average CFU/Plate × (Volume of Fluid D used ÷ Volume Filtered) % Recovery = (Population Recovered ÷ Population Inoculated) × 100

Recovery Factor = 100% + Percent Recovery

TABL Negative Con	
Fluid D	PBS
NOC	NOC

NOC = No Observable Colonies

CONCLUSION: For the Test Article Results, the average CFU/Plate was 15.0 and the CFU/Device was 31. Using the spore inoculation method, the percent recovery was 40% and the recovery factor was 2.5. For the Positive Control Results, the average CFU/Plate was 34.0 and the CFU/Device was 71. Using the spore inoculation method, the percent recovery was 92% and the recovery factor was 1.1. The Fluid D and PBS plates (negative controls) showed no growth.

AUTHORIZED PERSONNEL:

<u>Ashley J. Chateauneuf</u> Ashley G. Chateauneuf. B.S. Quality Assurance

parajita Mulchenjee

Aparajita Mukherjee, M.S. Study Director

www.toxikon.com

9.6 Appendix F: Assembled Sensor Certificate: Endotoxin

Sponsor Address	PendoTECH 174 Nassau St. Suite 256 Princeton, NJ 08542		Technical Initiation Technical Completion	6/4/2019 6/4/2019
Contact P.O. Number	Dennis Annarelli 2013567		Report Date Final Non-GLP Report	6/10/2019 19-01946-N1
Test Article	PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation	Ratio	1 Unit/120.0 mL	
Lot/Batch #	Not Supplied by Sponsor	Vehicle	USP Sterile Water for Inje	ction (SWFI)
Sterility	Sterile	Storage Condition	Room Temperature	
Study	Endotoxins Test Validation (I & E) - USP			
	Pouches containing devices tested inclui Test Article 1: Lot 17M6516 Test Article 2: Lot 17C51224 Test Article 3: Lot 18G75420	ded the followi	ng information:	
Comments	Sponsor Request: Suspend device by ca liquid to get barbed "T" section fully imme of the white cable/wire that is attached to	ersed, including	ersing sensors' clear polysulf g device's fluid path. Avoid i	one body in mmersing any
	The pH of test article 1 (Lot 17M6516) wa (Lot 17C51224) was 8.16 and was adjust and did not need to be adjusted.	as 8.18 and wa ted to 7.38. Th	as adjusted to 7.60. The pH e pH of test article 3 (18G75	of test article 2 6420) was 7.29

TEST RESULT CERTIFICATE

REFERENCES: The study was conducted based upon the following references: USP 42, NF 37, 2019. <85> Bacterial Endotoxins Test. ISO 10993-12, 2012 Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials. ANSI/AAMI ST72:2011 Bacterial Endotoxins - Test Methods, Routine Monitoring, and Alternatives to Batch Testing.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test articles (3 units) were identified by information on the product packaging provided by the Sponsor. The barbed "T" section and fluid path of each test article was individually immersed in 120.0 mL of SWFI heated to 37 ± 1 °C and extracted at room temperature for 60 ± 2 minutes. Each extract was assayed in duplicate at the neat concentration. A standard curve of endotoxin was prepared in duplicate with concentrations of 0.005, 0.05, 0.5, and 5 EU/mL. A positive product control (PPC) for each dilution was prepared containing 0.09 mL of the extract and 0.01 mL of the 5 EU/mL endotoxin standard to give a final concentration of 0.5 EU/mL. Water for Bacterial Endotoxins Test (BET) and SWFI served as the negative controls. The microtiter plate was pre–incubated in the plate reader at 37 ± 1 °C for ≥ 10 minutes. After incubation, Lysate (0.1 mL) was added to each well and the absorbance of each well at 405 nm was read every 150 seconds for a total of 40 data points or until the concentration reached 0.2 absorbance units. The Kinetic QCL reader used the initial reading of each well as its own blank. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

VALIDATION CRITERIA: The absolute value of the correlation coefficient (r) must be \geq 0.980 in order for the test to be valid. The PPC value must be within the range of 50-200% of the known spike concentration, to show neither inhibition nor enhancement of the assay.

> 15 Wiggins Ave., Bedford MA 01730 > 800.	458.4141 > Main: 781.275.3330	Toxikon.com
NUK UK TIS		

ΤΟΧΙΚΟΠ

Endotoxins Test Validation (I & E) - USP Final Non-GLP Report: 19-01946-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation

RESULTS:

Test Article	Sample	Dilution	рН	EU/mL	% PPC Recovery	Valid PPC (Yes/No)
PendoTECH Single Use	Test Article 1: Lot 17M6516	Neat	7.60	< 0.00868	103%	Yes
Conductivity Sensors Post 40 kGy Gamma	Test Article 2: Lot 17C51224	Neat	7.38	< 0.00500	82%	Yes
Irradiation	Test Article 3: Lot 18G75420	Neat	7.29	< 0.00500	104%	Yes

TABLE 1: Endotoxin Inhibition and Enhancement Results

CONCLUSION: The absolute value of the correlation coefficient for the linear regression was 0.998. Neat extracts from PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation do not inhibit or enhance endotoxin detection and satisfy the USP requirements for Amoebocyte Lysate Chromogenic Validation.

AUTHORIZED PERSONNEL:

Ashley J. Chateauneuf Ashley G. Chateauneuf, B.S. Quality Assurance

Linda Haggerty Linda Haggerty, M.S. Study Director

www.toxikon.com

8

TOXIKON RIGHT. FROM THE START.⁵⁴

TEST RESULT CERTIFICATE

Sponsor	PendoTECH		Technical Initiation	6/4/2019
Address	174 Nassau St. Suite 256		Technical Completion	6/4/2019
Contact P.O. Number	Princeton, NJ 08542 Dennis Annarelli 2013567		Report Date Final Non-GLP Report	6/10/2019 19-01946-N2
Test Article	PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation	Ratio	1 Unit/120.0 mL	
Lot/Batch #	Not Supplied by Sponsor	Vehicle	USP Sterile Water for Inje	ction (SWFI)
Sterility	Sterile	Storage Condition	Room Temperature	
Study	Chromogenic Endotoxin Testing			
	The test article was labeled with Lot # 18	8G75420.		
Comments	Sponsor Request: Suspend device by co liquid to get barbed "T" section fully imm of the white cable/wire that is attached to	ersed, including	ersing sensors' clear polysulf g device's fluid path. Avoid i	one body in mmersing any
	The pH of the test article was 7.24 and c	did not need to	be adjusted.	

REFERENCES: The study was conducted based upon the following references: USP 42, NF 37, 2019. <85> Bacterial Endotoxins Test. ISO 10993-12, 2012 Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials. ANSI/AAMI ST72:2011 Bacterial Endotoxins - Test Methods, Routine Monitoring, and Alternatives to Batch Testing.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article (1 unit) was identified by information on the product packaging provided by the Sponsor. The barbed "T" section and fluid path of the test article was individually immersed in 120.0 mL of SWFI heated to 37 ± 1 °C and extracted at room temperature for 60 ± 2 minutes. The extract was assayed in duplicate at the neat concentration. A standard curve of endotoxin was prepared in duplicate with concentrations of 0.005, 0.05, 0.05, and 5 EU/mL. A positive product control (PPC) for each dilution was prepared containing 0.09 mL of the extract and 0.01 mL of the 5 EU/mL endotoxin standard to give a final concentration of 0.5 EU/mL. Water for Bacterial Endotoxins Test (BET) and SWFI served as the negative controls. The microtiter plate was pre–incubated in the plate reader at 37 ± 1 °C for \ge 10 minutes. After incubation, Lysate (0.1 mL) was added to each well and the absorbance of each well at 405 nm was read every 150 seconds for a total of 40 data points or until the concentration reached 0.2 absorbance units. The Kinetic QCL reader used the initial reading of each well as its own blank. The absolute value of the correlation coefficient (r) must be \ge 0.980 in order for the test to be valid. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

RESULTS:

		Endote	oxin Quantity		
Lot/Batch #	pН	Dilution	EU/mL	EU/Device	Valid PPC (Yes/No)
18G75420	7.24	Neat	< 0.00500	< 0.6	Yes

TABLE 1:

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

TOXIKON

Chromogenic Endotoxin Testing Final Non-GLP Report: 19-01946-N2 Test Article Name: PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation

CONCLUSION: The absolute value of the correlation coefficient for the linear regression was calculated to be 0.998. The test article, PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation, contains < 0.00500 EU/mL and < 0.6 EU/Device of bacterial endotoxin and meets the requirements of USP <85>, Bacterial Endotoxins Test.

AUTHORIZED PERSONNEL:

<u>Ashley J. Chateauneuf</u> Ashley G. Ghateauneuf, B.S. Quality Assurance

Kinda Haggerty Linda Haggerty, M.S. Study Director

www.toxikon.com

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

12

Gamma Process Run ID 117005A

Product Lot Number	Quanta	11010
	Guanoty	UOM
	1	CS
0021039808		
	1	CS
0022897176		
	1	CS
MGBE620MGOM180		12121
	,	cs
NA		
ENSORS	1	CS
	MGBP620TMGDM180	0020499769 1 0021039808 1 0022897176 1 MGBP620IMGDM180 1

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019 10:07:	00 pm Approx. Downtime (hours).	3.82
Processing Run End Date/Time	21-Jan-2019 04:04:	00 am	
Minimum Specified Dose (kGy):	40.0	Minimum Delivered Dose (kGy):	42.1
Maximum Specified Dose (kGy):	60.0	Maximum Delivered Dose (kGy):	50.8
Product meets Custo	ner specifications, ze	ro nonconformities occurred during this irradiation run.	
Reviewed and E-Signed By		signed On 1/21/2019 at 8.48 A	м
 Francine Maranda (Q: Document Content Revision 	10	UTC/ GMF Offser (nh ann) -5:00	
Processing Location: STERIS 435 Whitney Street Northborough, WA 01532 Phone: 506-393-9323 Fax: 844-698-8778	EN/ISO 13485, and in ANSI/AANIJISO 1113	a in compliance with upplicable state and federal aspulations (FDA, NRC, EP describes under a quelly system which media the recursion and of DA, Qr alignment with the applicable standard, EN ANSI/AAM/INSO 11137 or EN D. For Sens processed with gamma institution. STERIS aufilias that there instead doese within the presiston and accuracy of the dosimetry system use	52
1-36034091354/01368 Last Rev In Rel. 3.6.5.1		Rulusau Date 45-Jun-2017	Page 1 of

				â	Process R the Prepared: 1	Process Run ID 117905A Date Prepared: 1/21/2019 8:47:34AM
SSING NOT	Processing Locason: Irrediator / Method;	Northborough 126, Nordion Cobat-60 Irradiator #126, ON-STD	radiator #126, 0	OTSM		
N,	Seq Coordinate	nate Barcode ID	heer	Instrument	Deee ISGV	Final Deee (KCK)
W B	Final Dose Measurements					
+	1 001	08/7600280204	6100H1 P	0484	28.7	42.1
		08R600257802	2 TH0048	0461	13.4	
	2 TA5	089600289439	9 TH0049	0484	34.4	50.5
		089600257878	8 THOD48	0481	16,1	
	3 TES	08F000289459	9 THD048	0434	34.7	50.8
		08P600257866	THOMB	0481	16.1	
	Minim	Minimum Dose for Record (KGy):	-	42.1		
	Maxin	Maximum Dose for Record (kGy):		50.8		
	-			Signature Manifest	Manifest	
	8	Prepared By: Baez, Hector (Material Handler)	rial Handler)			Signed On 1/21/2019 at 6:23 AM UTC/ eMT Offer(httml; -500
	ŝ	Approved By: Francine Maranda (QS & RC Analyst)	QS & RC Ana	(Jscf)		Signed On 1/21/2019 at 8:47 AN UTC/ ONT Offset (Incom) -5:00
		Document Content Revision: 1	tion 1			

9.7 Appendix G: Assembled Sensor Certificate: B&F

тохікоп

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	2/8/2019
Address	174 Nassau Street	Technical Completion	2/13/2019
	Ste.256 Princeton, New Jersey 08542		
Contact	Dennis Annarelli	Report Date	2/15/2019
P.O. Number	2013094	Final Non-GLP Report	19-00365-N1

Lot/Batch #	Not Supplied by Sponsor
Study	Method Suitability Test via Membrane Filtration – USP
Comments	None

REFERENCES: The study was conducted based upon the following references: USP 41, NF 36, 2018. <71> Sterility Tests.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: Six (6) test articles were supplied by the Sponsor for testing. A quanticult of Bacillus subtilis (B. subtilis), Aspergillus brasiliensis (A. brasiliensis, formerly known as Aspergillus niger), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans), and Clostridium sporogenes (C. sporogenes) all consisting of 10-100 CFU were used. Cultures were rehydrated according to manufacturer's instructions.

Each test article were individually immersed in 100 mL of sterile Fluid D in a sterile bag. A volume of 98 mL of extract was recovered and aseptically membrane filtered. Following membrane filtration and rinse with 10 mL of sterile Phosphate Buffered Saline (PBS), the filters were directly transferred (one unit per vessel) into 100 mL of sterile Trypticase Soy Broth (TSB) and 100 mL of sterile Fluid Thioglycollate medium (FTM). One TSB vessel was inoculated with *Bacillus subtilis*. One TSB vessel was inoculated with *Candida albicans*. The third TSB vessel was inoculated with *Aspergillus brasiliensis*. One FTM vessel was inoculated with *Pseudomonas aeruginosa*. One FTM vessel was inoculated with *Staphylococcus aureus*. The remaining FTM vessel was inoculated with *Clostridium sporogenes*.

As positive controls, an equivalent number of TSB and FTM vessels were inoculated with the respective organisms. One TSB and one FTM vessel were un-inoculated and served as negative controls. A volume of 20 mL of PBS and 20 mL of Fluid D of the same lot used was membrane filtered and the filters were put in respective containers containing 100 mL of TSB each. All TSB vessels were incubated aerobically at 20-25 °C for 5 days. All FTM vessels except *C. sporogenes* were incubated aerobically at 30-35 °C for 5 days. FTM vessels with *C. sporogenes* were incubated ananerobically at 30-35 °C for 5 days. Growth was visually compared between test and control articles at specific time points.

RESULTS: The growth of each organism was independent of the presence of the test article. Growth was observed for all organisms and test article media conditions in TSB by Day 3. No growth was observed in the negative control, Fluid D, and PBS.

			Ste	rility validation	and the local division of the local division	and the second se			
1000				Growth (+	/-) per Mediu	ım	a la constante de		
David			Orga	inism			Magating		-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Day	B.s	ubtilis	C. al	bicans	A. bra	siliensis	Negative Control	Fluid D	PBS
	With TA	Without TA	With TA	Without TA	With TA	Without TA	Control		
1	W	W	W	W	W	W	W	W	W
2	W	W	w	W	w	W	W	W	W
3	+	+	+	+	+	+	-	-	-
4	+	+	+	+	+	+	-	-	-
5	+	+	+	+	+	+	-	-	-

TABLE 1: Sterility Validation Results – TSB

TA = Test article, W = Weekend, (-) = No Growth, (+) = Growth

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

τοχικοπ

Method Suitability Test via Membrane Filtration – USP Final Non-GLP Report: 19-00365-N1 Test Article Name: PendoTECH Single Use Pressure Sensor Polysulfone Post Gamma Irradiation (>40KGy)

0.000000	tien terreter and			Growth (+	/-) per Mediu	ım			S. R. Bardin
	al da gara		Orga	nism	Selection of		Negative		171-16-16
Day	C. spo	rogenes	S. a	ureus	P. aer	uginosa	Control	Fluid D	PBS
	With TA	Without TA	With TA	Without TA	With TA	Without TA	Control		199 A. 199
1	W	W	W	W	W	W	W	W	w
2	W	W	W	W	W	W	W	W	W
3	+	+	+	+	+	+	-	-	-
4	+	+	+	+	+	+	-	-	-
5	+	+	+	+	+	+	-	-	-

CONCLUSION: The test articles are considered non-bacteriostatic and non-fungistatic, according to the USP guidelines.

AUTHORIZED PERSONNEL:

John/ Lugo-Toro,/B.S Quality Assurance

MBS for

Aparajita Mukherjee, M.S. Study Director

www.toxikon.com

ú

STERIS

10

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

Gamma Process Run ID 117005A

Product Code	Product Lot Number	Quantity	
40-60 SAMPLES	0020499769	Quantity	UOM
Cust Item ID: CAT, NO. CDRF1TN05		.1	CS
40-60 SAMPLES	0021039608		
Cust Item ID: CAT. NO. CDRF4HN05		1	CS
40-60 SAMPLES	0022897176		CS
Cust Item ID: CAT. NO. CDRM8HN05		1	CS
40-60 SAMPLES	MGBF620/MGDM180	53	
Cust Item ID: 20277484/00123958DR		1	CS
40-60 SAMPLES	NA		
Cust Item ID: PENDOTECH POLYSULFONE SENSORS		1	CS

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019	10:07:00 pm	Approx. Downtime (hours);	3	.82
Processing Run End Date/Time:	21-Jan-2019	04:04:00 am			
Minimum Specified Dose (kGy):	40.0		Minimum Delivered Dose (kGy):	42.1	
Maximum Specified Dose (kGy):	60.0		Maximum Delivered Dose (kGy):	50.8	
Product meets Custo	mer specificati	ons; zero nono	onformities occurred during this irradiation run.		
		Signature	Manifest	-	-
Reviewed and E-Signed By . Francine Maranda (Q		(unt)	Signed On 1/21/2019 at 8: UTC / GMT Offset (hh.mm) -5:	48 AM	
Document Content Revision		1930	erer end ender primity as	.0	
				-	
Processing Location: STERIS	and OSHA) a	Ind provide service	ance with applicable state and federal regulations (FDA, NR s under a quality system which meets the requirements of F	DA OED	
435 Whitney Street Northborough, MA 01532	EN/ISO 1348 ANSI/AAMI/IS	5, and in elignmen SO 11135. For iten	t with the applicable standard, EN ANSI/AAMI/ISO 11137 or to processed with pamma irrediation, STERIS participation in the	EN	
Phone: 508-393-9323	items receive	o the indicated do:	eas within the precision and accuracy of the dosimetry system	n used.	
Fax: 844-698-9776					
1-00034/01354/01369 Last Rev in Rel. 3.6.5.1			Release Date 05-Jun-2017		Page 1 of 1

Ssing	Processing Location:	2	Northborough			te Propared: 1	Date Propared: 1/21/2019 8:47:34AM
ator /	Irradiator / Method:		126, Nordion Cobalt-60 Irradiator #126, ON-STD	ator #126, ON	STD		
Carrier Si	Seq	Coordinate	e <u>Barcode ID</u>	Insert	Instrument	Dose (kGy)	Final Dose (kGv)
Se M	Final Dose Measurements	ments					
725	-	0C1	0BR600288204	TH0049	0484	28.7	42.1
			0BR600257802	TH0048	0481	13.4	
-	N	TAS	0BR600288439	TH0049	0484	34.4	50.5
			0BR600257878	TH0048	0481	16.1	
	г е	TES	0BR600288499	TH0049	0484	34.7	50.8
			0BR600257886	TH0048	0481	16.1	
		Minimun	Minimum Dose for Record (kGy):	4	42.1		
		Maximu	Maximum Dose for Record (kGy):	5	50.8		
	l I						
	-				Signature Manifest	Aanifest	
	-	¢9	Prepared By: Baez, Hector (Material Handler)	Handler)			Signed On 1/21/2019 at 6:23 AM UTC/ GMT offset (httimm): -5:00
		6	Approved By: Francine Maranda (QS & RC Analyst)	& RC Anal)	(st)		Signed On 1/21/2019 at 8:47 AM UTC / GMT Officer (hhuman)5:00
	-						

D 1 0

9.8 Appendix H: Gamma Certificate for Temperature Sensors used in 7.3/8.3

5A			
JASON	P SAMP / JASON P-SAMP	Quantity 1 1	UOM CS CS
13-Jan-2018 08:42:00 am	Approx. Downtime (hours): Minimum Delivered Dose (kGy):	0.00)
Signature	e Manifest		
Operating facilities are in com	pliance with applicable state and federal regulations (FDA, cos under a quality system which meets the requirements of	NRC, EPA,	
	JASON NA / JU 13-Jan-2018 07:25:00 am 13-Jan-2018 08:42:00 am 27.5 45.0 mer specifications; zero nom Signature	13-Jan-2018 08:42:00 am 27.5 Minimum Delivered Dose (kGy): 45.0 Maximum Delivered Dose (kGy): mer specifications; zero nonconformities occurred during this irradiation run Signature Manifest Signed On 1/13/2018 a UTC / GMT Offset (hhtmm):	JASON P SAMP / JASON P-SAMP 1 NA / JULIE-SAMP 1 1 13-Jan-2018 07:25:00 am Approx. Downtime (hours): 0.00 13-Jan-2018 08:42:00 am 0.00 13-Jan-2018 08:42:00 am 0.00 27.5 Minimum Delivered Dose (kGy): 30.4 45.0 Maximum Delivered Dose (kGy): 35.1 mer specifications; zero nonconformities occurred during this irradiation run. Signature Manifest 5 Technician) Signed On 1/13/2018 at 3:57 PM UTC / OMT Offset (thrum): -5:00

S Ippany Ippany Ippany I, Nordion Cobat-60 Irr: I, Nordion Cobat-60 Irr: Barcode ID 0BG592038635 0BG592038635 0BG5920386332 0BG5920386332 0BG5920386332 0BG5920386332 0BG5920386332 0BG5920386332 0BG5920386332 0BG5920386332 0BG592038833 0BG59203883 0BG592038833 0BG592038833 0BG592038833 0BG592038833 0BG592038833 0BG592038833 0BG592038833 0BG592038833 0BG59203883 0BG592038833 0BG592038833 0BG592038833 0BG59203883 0BG592038833 0BG5920388 0BG59203883 0BG5920388 0BG5920388 0BG5920388 0BG5920388 0BG5920388 0BG5920 0BG5920388 0BG5920 0BG592	ny dion Cobalt- dion Cobalt- Barcode II Barcode II 0BG59203 0BG59200 0BG59200 0BG59200 0BG592	🖌 🛛 📲 🖉 🖉 🐨 🐨 🐨 🐨	STERIS Dosimetry Record (Alanine Dosimetry System) Prepared for ADVANCED SCIENTFICS INC Process Run ID 91935A Date Prepared: 1/13/2018 3:56:41PM	adiator #131, ON-STD	Final Insert Instrument Dose (KGy) Dose (KGy)	TH0096 0482 31.5	TH0096 0482 31.1 31.1	TH0096 0482 30.4	TH0096 0462 35.1 35.1	TH0096 0482 34.9 34.9	TH0096 0482 33.4 33.4	TH0096 0482 34.3 34.3	30.4): 35.1	Signature Manifest	(Cell Operator) UTC/GMT Offset (hhrmm): -5:00	Signed On 1/13/2018 at 3:56 PM UTC / GMT Offset (hhrmm): -5:00
	ERL tion: white the second matter to the second ma	C Coordinate ing Location: Wh ing Location: Wh See Coordinate Measurements Maximum Minimum	S	ippany I, Nordion Cobalt-60 Irr	Barcode ID	08G592038541	08G592038836	0BG592038532	08G592038835	08G592038833	08G592038732	086592038830	Dose for Record (kGy	n Dose for Record (kG)		eler	

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Gamma Process Run ID 205239D

GROUP 501	B109735-I / 97MNV-0000	10	UOM
0000000000			CS
GROUP 501	B109735-I / 97MNW-0000	10	CS
GROUP 69	JASON P SAMP / JASON P-SAMP	1	CS
GROUP 7	100001926 / 97MSE-0000	5	CS
GROUP 7	B106522-I / 97LRX-0000	1	CS
GROUP 7	B108295-I / 97LXH-0000	22	CS
GROUP 7	B109173-I / 97MCJ-0000	1	CS
GROUP 7	B109174-I / 97MCK-0000	1	CS
GROUP 7	B109344-I / 97K2U-0000	5	CS
GROUP 7	B109606-I / 97MCL-0000	1	CS
GROUP 7	B109606-I / 97MG3-0000	1	cs
GROUP 7	B113538-I / 97LXL-0000	1	CS
CROUP 7	B114444-I / 97MMZ-0000	1	CS
GROUP 7	B114958-I / 97KBX-0000	7	CS

Processing Run Start Date/Time:	22-Jan-2018	08:34:28 am	A	pprox. Downtime (hours):	0.00
Processing Run End Date/Time:	22-Jan-2018	10:34:09 am			
Minimum Specified Dose (kGy):	27.5		Minimum Del	ivered Dose (kGy):	29.0
Maximum Specified Dose (kGy)	: 45.0		Maximum De	livered Dose (kGy):	42.1
Product meets Custo	mer specificat	ions; zero nonco	nformities occurred	during this irradiation run.	
Reviewed and E-Signed By		Signature	Manifest		
Tracy Wild (QS/RC T				Signed On 1/23/2018 at 12 UTC / GMT Offset (hh:mm): -5d	
Document Content Revisio	1				
Processing Location:	Operating fa	clitties are in complia	ince with applicable sta	te and federal regulations (FDA, NR	IC. EPA.
STERIS 23 Elizabeth Drive	and OSHA)	and provide services	under a quality system	which meets the requirements of F 0 11137, STERIS certifies that the	DA OSR
Chester, NY 10918	processed it system user	ems received the ind	icated doses within the	precision and accuracy of the dosir	neiry
	0/00011 0000	-			
Phone: 845-469-4087					
Phone: 845-469-4087 Fax: 845-469-7512					

Date Prepared: 1/23/2018 12:17:21PM It Dose (kGy) Dose (kGy) Dose (kGy) 31 29.6 38.1 38.1 31 38.1 38.1 38.1 31 38.1 38.1 38.1 31 38.1 38.1 38.1 31 38.1 38.1 38.1 31 38.2 39.5 39.5 31 38.7 37.2 37.7 31 36.3 36.3 36.3 31 36.3 36.3 31.8 31 30.9 31.3 31.3 31 30.3 31.3 31.3 31 30.3 31.3 31.3 31 31.3 31.3 31.3 31 31.3 31.3 31.3 31 31.3 31.3 31.3 31 31.3 31.3 31.3 31 31.3 31.3 31.3 31
--

Protection Internation Internation Incolution Zendent contraction Zendent contraction Zendent contraction Incolution Zendent contraction Zendent contraction Zendent contraction Zendent contraction Incolution Inter Description Interval Zendent contraction Interval Incolution Interval Zendent contraction Interval Zendent contraction Zendent contraction Incolution Interval Zendent contraction Interval Zendent contraction Zendent contraction Incolution Interval Zendent contraction Interval Zendent contractin Zendent						Da	Process Ry te Prepared: 1	Properties Run (D 205239D Date Properties 1/23/2018 12:17:21PM
Sec Coordinate Earcode ID Insertument Conditient Does (KGN) 8 11 1E7 08.60007239 114067 0481 38.6 38.6 8 11 1E7 08.60007239 114067 0481 38.6 38.6 8 13 2A5 08.60007023 114067 0481 42.1 42.1 8 14 ZA7 08.60007025 114067 0481 42.0 40.0 9 15 ZA7 08.60007430 114067 0491 39.4 31.6 9 16 ZA7 08.60007430 114067 0491 39.4 31.6 9 16 ZA7 08.60007430 114067 0491 31.6 31.6 9 1 DC1 08.60007430 1140657 0491 31.6 31.6 9 1 DC1 DC1 04057 0491 31.6 31.6 9 1 DC1 DC1	cessing	J Locatic Method		dion Cobalt-60 Irradi	ator #239, Cor	nt Batch		
8 11 1E7 08-60007299 TH0057 0491 36.6 38.6 9 12 2A3 08-60007032 TH0057 0491 42.1 42.1 1 13 2A5 08-60007032 TH0057 0491 42.1 42.1 1 13 2A5 08-60007032 TH0057 0491 30.8 39.8 1 14 2A7 08-60007032 TH0057 0491 30.8 39.6 1 15 2E5 08-60007032 TH0057 0491 30.6 30.6 1 17 2E7 08-60007032 TH0057 0491 30.6 31.6 1 17 2E7 08-60007142 TH0057 0491 31.6 31.6 1 17 2E7 08-60007142 TH0057 0491 31.6 31.6 1 07 2E7 08-60007142 TH0057 0491 31.6 31.6 1 05 05 </th <th></th> <th></th> <th>coordinate</th> <th>Barcode ID</th> <th>Insert</th> <th>Instrument</th> <th>Dose (kGv)</th> <th>Final Dose (kGy)</th>			coordinate	Barcode ID	Insert	Instrument	Dose (kGv)	Final Dose (kGy)
3 12 2A3 0BJ600007032 TH0057 0491 42.1 42.1 3 13 2A5 0BJ600007025 TH0057 0491 40.0 40.0 1 14 2A7 0BJ60007025 TH0057 0491 39.8 39.6 1 14 2A7 0BJ60007263 TH0057 0491 39.6 39.6 1 17 2E7 0BJ60007043 TH0057 0491 39.6 39.6 1 17 2E7 0BJ60007042 TH0057 0491 39.6 39.6 1 17 2E7 0BJ60007132 TH0057 0491 31.6 31.6 1 17 2C1 0BJ60007132 TH0057 0491 31.6 31.6 1 0C1 0BJ60007132 TH0057 0491 31.6 31.6 1 1 0C1 0BJ60007143 TH0057 0491 31.6 31.6 1 1 0C1 0BJ			E7	0BJ600007259	TH0057	0491	38.6	
1 2AS 08J600007025 TH0057 0491 40.0 1 2A7 08J600007430 TH0057 0491 39.8 1 1 2E5 08J60000765 TH0057 0491 39.8 1 1 2E7 08J600007055 TH0057 0491 39.4 1 1 2E7 08J600007044 TH0057 0491 39.9 1 1 2E7 08J600007042 TH0057 0491 39.9 1 1 0C1 08J600007132 TH0057 0491 31.6 1 0C1 0BJ600007132 TH0057 0491 31.6 1 0C1 0BJ600007132 TH0057 0491 31.6 1 0C1 0BJ60007132 TH0057 0491 31.6 1 1 0C1 0BJ60007126 TH0057 0491 31.6 1 1 1 0C1 0BJ600007245 TH0057 0491 40.3			5V3	0BJ600007032	TH0057	0491	42.1	
14 2A7 0BJ60007430 TH0057 0491 39.8 1 15 2E3 0BJ60007563 TH0057 0491 39.8 1 16 2E5 0BJ60007055 TH0057 0491 39.4 1 17 2E7 0BJ60007043 TH0057 0491 39.9 1 1 0C1 0BJ60007042 TH0057 0491 39.6 1 0C1 0BJ60007042 TH0057 0491 31.5 31.6 1 0C1 0BJ60007132 TH0057 0491 31.5 31.6 1 0C1 0BJ60007132 TH0057 0491 31.5 31.6 1 0C1 0BJ60007136 TH0057 0491 31.5 31.6 1 1 0C2 0BJ60007290 TH0057 0491 31.6 1 1 0C1 0BJ60007290 TH0057 0491 31.6 1 1 1 0C2 0BJ60007290			245	0BJ600007025	TH0057	0491	40.0	40.0
15 2E3 0BJ60007263 TH0057 0491 40.5 1 16 2E5 0BJ60007055 TH0057 0491 39.4 1 17 2E7 0BJ60007055 TH0057 0491 39.9 1 1 0C1 0BJ60007042 TH0057 0491 39.9 1 1 0C1 0BJ60007042 TH0057 0491 31.5 1 0C1 0BJ60007132 TH0057 0491 31.5 2 0C2 0BJ60007132 TH0057 0491 31.5 4 0C7 0BJ60007132 TH0057 0491 31.5 6 1A3 0BJ60007126 TH0057 0491 31.5 7 1 1 1 2 0BJ60007245 TH0057 0491 30.9 6 1A3 0BJ60007246 TH0057 0491 30.9 31.4 7 1A5 0BJ60007245 TH0057 0491 30.9 31.4			147	0BJ600007430	TH0057	0491	39.8	39.8
16 2E5 0BJ60007055 TH0057 0491 39.4 1 7 2E7 0BJ60007042 TH0057 0491 39.4 1 0C1 0BJ60007042 TH0057 0491 39.6 2 0C3 0BJ60007042 TH0057 0491 31.6 3 0C5 0BJ60007132 TH0057 0491 31.5 4 0C7 0BJ60007010 TH0057 0491 31.5 5 0C5 0BJ60007014 TH0057 0491 31.5 6 1A3 0BJ60007114 TH0057 0491 31.5 7 1A5 0BJ60007126 TH0057 0491 30.9 8 1A7 0BJ60007245 TH0057 0491 40.3 9 1E3 0BJ60007245 TH0057 0491 40.3 10 1E7 0BJ60007245 TH0057 0491 40.3 11 1E7 0BJ60007245 TH0057 0491 40.4			E3	0BJ600007263	TH0057	0491	40.5	40.5
17 2E7 08J60007044 TH0057 0491 39.6 1 0C1 08J60007042 TH0057 0491 30.6 2 0C3 08J60007042 TH0057 0491 31.6 3 3 0C5 08J600070132 TH0057 0491 31.6 4 0C7 08J600007114 TH0057 0491 31.5 5 0C50 08J600007114 TH0057 0491 31.6 6 1A3 08J600007126 TH0057 0491 39.9 7 1A5 08J600007126 TH0057 0491 39.9 7 1A5 08J600007245 TH0057 0491 39.9 9 1E3 08J600007245 TH0057 0491 39.9 10 1E6 08J600007245 TH0057 0491 39.9 11 1E7 08J600007245 TH0057 0491 40.3 11 1E7 08J600007246 TH0057 0491 40			ES	0BJ600007055	TH0057	0491	39.4	39.4
1 0C1 0BJ600077042 TH0057 0491 30.6 2 0C3 0BJ60007132 TH0057 0491 31.5 3 0C5 0BJ60007132 TH0057 0491 31.5 4 0C7 0BJ60007134 TH0057 0491 31.5 5 0C5 0BJ60007144 TH0057 0491 31.5 6 1A3 0BJ60007146 TH0057 0491 31.5 7 1A5 0BJ60007126 TH0057 0491 31.5 8 1A7 0BJ60007126 TH0057 0491 30.9 9 1E3 0BJ60007245 TH0057 0491 39.9 10 1E5 0BJ60007245 TH0057 0491 39.9 11 1E7 0BJ60007335 TH0057 0491 40.3 11 1E7 0BJ60007335 TH0057 0491 40.2 13 2A5 0BJ60007335 TH0057 0491 40.4			E7	0BJ600007044	TH0057	0491	39.9	39.9
1 2 0C3 0BJ60007132 TH0057 0491 31.6 1 3 0C5 0BJ600007298 TH0057 0491 31.3 1 4 0C7 0BJ60000710 TH0057 0491 31.5 1 4 0C7 0BJ600007114 TH0057 0491 31.5 1 5 0C5OB 0BJ600007114 TH0057 0491 31.5 1 7 1A5 0BJ600007126 TH0057 0491 39.9 1 7 1A5 0BJ600007245 TH0057 0491 40.3 9 1E3 0BJ600007245 TH0057 0491 39.9 10 1E5 0BJ600007245 TH0057 0491 40.3 11 1E7 0BJ600007335 TH0057 0491 40.2 12 2A3 0BJ600007335 TH0057 0491 40.4 13 2A5 0BJ600007335 TH0057 0491 40.0 14	6	-	CI	0BJ600007042	TH0057	0491	30.6	30.6
3 0C5 0BJ60007298 TH0057 0491 31.3 4 0C7 0BJ600007010 TH0057 0491 31.4 5 0CEOB 0BJ600007114 TH0057 0491 31.4 6 1A3 0BJ600007126 TH0057 0491 39.9 7 1A5 0BJ60007126 TH0057 0491 39.9 7 1A5 0BJ60007126 TH0057 0491 39.9 8 1A7 0BJ60007290 TH0057 0491 40.3 9 1E3 0BJ60007245 TH0057 0491 39.9 10 1E5 0BJ60007231 TH0057 0491 39.9 11 1E7 0BJ60007335 TH0057 0491 40.2 12 2A3 0BJ60007335 TH0057 0491 40.0 13 2A5 0BJ60007335 TH0057 0491 40.4 13 2A5 0BJ60007335 TH0057 0491 40.0 <t< td=""><td>6</td><td></td><td>ü</td><td>0BJ600007132</td><td>TH0057</td><td>0491</td><td>31.6</td><td>31.6</td></t<>	6		ü	0BJ600007132	TH0057	0491	31.6	31.6
4 0C7 0BJ60007010 TH0057 0491 31.5 5 0CEOB 0BJ60007114 TH0057 0491 31.4 7 1A5 0BJ60007114 TH0057 0491 39.9 7 1A5 0BJ60007126 TH0057 0491 39.9 8 1A7 0BJ60007290 TH0057 0491 40.9 9 1E3 0BJ60007245 TH0057 0491 40.3 9 1E3 0BJ60007245 TH0057 0491 40.3 10 1E5 0BJ60007245 TH0057 0491 39.9 11 1E7 0BJ60007335 TH0057 0491 40.2 11 1E7 0BJ60007335 TH0057 0491 40.0 13 2A5 0BJ60007335 TH0057 0491 40.0 13 2A5 0BJ60007335 TH0057 0491 40.0 13 2A5 0BJ60007462 TH0057 0491 40.0	6		C5	0BJ600007298	TH0057	0491	31.3	31.3
5 0CEOB 0BJ60007114 TH0057 0491 31.4 7 1A5 0BJ600007490 TH0057 0491 39.9 7 1A5 0BJ600007126 TH0057 0491 39.9 8 1A7 0BJ600007290 TH0057 0491 40.9 9 1E3 0BJ600007245 TH0057 0491 39.9 10 1E5 0BJ600007245 TH0057 0491 39.9 11 1E7 0BJ600007231 TH0057 0491 39.9 11 1E7 0BJ600007335 TH0057 0491 40.2 12 2A3 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007462 TH0057 0491 40.0 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007462 TH0057 0491 40.0	6		C7	0BJ600007010	TH0057	0491	31.5	31.5
6 1A3 0BJ600007190 TH0057 0491 39.9 7 1A5 0BJ600007126 TH0057 0491 40.9 8 1A7 0BJ600007290 TH0057 0491 40.3 9 1E3 0BJ600007245 TH0057 0491 40.3 10 1E5 0BJ600007245 TH0057 0491 39.9 11 1E7 0BJ600007201 TH0057 0491 39.9 11 1E7 0BJ600007335 TH0057 0491 40.2 12 2A3 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007462 TH0057 0491 40.0 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 40.0	თ		CEOB	0BJ600007114	TH0057	0491	31.4	31.4
7 1A5 0BJ60007126 TH0057 0491 40.9 8 1A7 0BJ600007245 TH0057 0491 40.3 9 1E3 0BJ600007245 TH0057 0491 39.9 10 1E5 0BJ60007245 TH0057 0491 39.9 11 1E7 0BJ60007221 TH0057 0491 30.9 11 1E7 0BJ60007335 TH0057 0491 40.2 12 2A3 0BJ60007335 TH0057 0491 40.4 13 2A5 0BJ60007462 TH0057 0491 40.4 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007462 TH0057 0491 39.6 15 2E3 0BJ600007462 TH0057 0491 39.6	6		A3	0BJ600007490	TH0057	0491	39.9	39.9
8 1A7 0BJ60007290 TH0057 0491 40.3 9 1E3 0BJ60007245 TH0057 0491 39.9 10 1E5 0BJ60007245 TH0057 0491 39.9 11 1E7 0BJ60007231 TH0057 0491 39.9 11 1E7 0BJ60007335 TH0057 0491 40.2 12 2A3 0BJ60007335 TH0057 0491 40.0 13 2A5 0BJ600007462 TH0057 0491 40.0 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 39.6	0	7 1	A5	0BJ600007126	TH0057	0491	40.9	40.9
9 1E3 0BJ60007245 TH0057 0491 39.9 10 1E5 0BJ600007221 TH0057 0491 39.9 11 1E7 0BJ600007500 TH0057 0491 39.9 12 2A3 0BJ600007335 TH0057 0491 40.2 13 2A5 0BJ600007246 TH0057 0491 40.4 13 2A5 0BJ600007246 TH0057 0491 40.4 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 39.6	6		A7	0BJ600007290	TH0057	0491	40.3	40.3
10 1E5 0BJ60007221 TH0057 0491 39.9 11 1E7 0BJ600007500 TH0057 0491 40.2 12 2A3 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007346 TH0057 0491 40.0 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 40.0			E3	0BJ600007245	TH0057	0491	39,9	39.9
1E7 0BJ600007500 TH0057 0491 40.2 2A3 0BJ600007335 TH0057 0491 40.4 2A5 0BJ600007246 TH0057 0491 40.4 2A7 0BJ600007462 TH0057 0491 40.4 2E3 0BJ600007462 TH0057 0491 40.0	с С		E5	0BJ600007221	TH0057	0491	39.9	39.9
12 2A3 0BJ600007335 TH0057 0491 40.0 13 2A5 0BJ600007246 TH0057 0491 40.4 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 30.6			E7	0BJ600007500	TH0057	0491	40.2	40.2
13 2A5 0BJ600007246 TH0057 0491 40.4 14 2A7 0BJ600007462 TH0057 0491 40.0 15 2E3 0BJ600007420 TH0057 0491 39.6			43	0BJ600007335	TH0057	0491	40.0	40.0
14 2A7 0BJ60007462 TH0057 0491 40.0 15 2E3 0BJ60007420 TH0057 0491 39.6			15	0BJ600007246	TH0057	0491	40.4	40.4
15 2E3 0BJ600007420 TH0057 0491 39.6			17	0BJ600007462	TH0057	0491	40.0	40.0
			8	0BJ600007420	TH0057	0491	39.6	39.6

,	-				Dat	Process Ru	Prepared for ADVANCED SCIENTIFICS INC Process Run ID 205239D Date Prepared: 1/23/2018 12:17:21PM	
ocessi adiator	Processing Location: Irradiator / Method:	ë	Chester 239, Nordion Cobalt-60 Irradiator #239, Cont Batch	ator #239, Cor	nt Batch			
Carrier	Seq	Coordinate	Barcode ID	Insert	Instrument	Dose (kGv)	Final Dose (kGv)	
6	16	2E5	0BJ600007049	TH0057	0491	39.1	39.1	
6	17	2E7	0BJ600007412	TH0057	0491	39.7	39.7	
10	-	0C1	0BJ600007106	TH0057	0491	30.5	30.5	
10	7	0C3	0BJ600007333	TH0057	0491	31.5	31.5	
10	ო	0C5	0BJ600007376	TH0057	0491	30.8	30.8	
9	4	0C7	0BJ600007280	TH0057	0491	31.4	31.4	
10	ŝ	OCEOB	0BJ600007414	TH0057	0491	31,2	31.2	
10	9	1A3	0BJ600007077	TH0057	0491	41.1	41.1	
10	۲	1A5	08.1600007096	TH0057	0491	41.2	41.2	
10	8	1A7	0BJ600007499	TH0057	0491	39.8	39.8	
10	6	1E3	0BJ600007292	TH0057	0491	39.2	39.2	
10	10	165	0BJ600007196	TH0057	0491	38.6	38.6	
10	5	1E7	0BJ600007062	TH0057	0491	40.0	40.0	
10	12	2A3	0BJ600007357	TH0057	0491	41,1	41.1	
10	13	2A5	0BJ600007200	TH0057	0491	40.3	40.3	
10	4	2A7	0BJ600007131	TH0057	0491	39.5	39.5	
10	15	2E3	0BJ600007014	TH0057	0491	39.6	39.6	
10	16	2E5	0BJ600007226	TH0057	0491	39.0	39.0	
10	17	2E7	0BJ600007287	TH0057	0491	39.9	39.9	
1	-	TBA5	0BJ600007057	TH0057	0491	38.5	38.5	
ŧ	2	TBE5	0BJ600007300	TH0057	0491	37.4	37.4	

					Prepa	sred for ADVAN Process Ru te Prepared: 1/	Prepared for ADVANCED SCINTIFICS INC Process Run ID 205239D Date Prepared: 1/23/2018 12:17:21PM		
g Lo	Processing Location: irradiator / Method:	Chester 239, Nordi	Chester 239, Nordion Cobail-60 Irradiator #239, Cont Batch	or #239, Co	int Batch				
Seg	Coordinate	late	Barcode ID	Insert	Instrument	Dose (kGv)	Final Dose (kGv)		
	Minir Maxin	num Dose f	Minimum Dose for Record (kGy): Maximum Dose for Record (kGy):		29.0 42.1				
					Signature Manifest	Manifest			
	Ŷ		Prepared By: James Calone (Material Handler II)	Handler I	ĥ		Signed On 1/22/2018 at 12:40 PM UTC / GMT Office (nhmm): -5:00	3 at 12:40 PM	
	*		Approved By: Tracy Wild (QS/RC Technician) Document Content Revision: 1	nician)			Signed On 1/23/2018 at 12:17 PM UTC / GWT Offset (hhimm): -5:00	t at 12:17 PM): -5:00	
]	

9.9 Appendix I: Certificate of Calibration for Pressure Gauge Used in 8.1

Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innocalsolutions.com

NIST Traceable **Calibration Report**

Reference Number: 1374549 PO Number RANDD

PendoTECH 3490 US Route 1 **Building 15F** Princeton, NJ 08540 United States

Druck Inc. Manufacturer: Model Number: DPI 104 0-100 PSI Description: Pressure, Digital Gauge, 0-100 PSI Asset Number: CP21618 Serial Number: 2936090 Procedure: DS Druck DPI 104 0-100PSI

/10/2020
C. I MAR de Mile M
Tolerance
Tolerance, No

lo adjustment

Remarks: NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the

	the second s	Stand	lards Utilized		
Asset No.	Manufacturer	Model No.	Description	Cal. Date	Due Date
CP144957	Fluke Corporation	PM600-G100K	Pressure, Measurement Module 0 - 15PSI	05/24/2019	05/31/2020
CP144959	Fluke Corporation	PM600-A700K	Pressure, Measurement Mod -12.1 -100PSI	05/23/2019	

FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
Zero Reference	0.00	0.00		Same		Reference Only
Increasing Pressure Accuracy	10.00 psi	10.00		Same		9.95 to 10.05 psi [EMU 0.007 psi][TUR 7.1.1]
1	20.00 psi	20.00		Same		19.95 to 20.05 psi [EMU 0.031 psi][TUR 1.6.1]
1	30 00 ps	30.01		Same		29.95 to 30.05 psi [EMU 0.0092 psi][TUR 5.5.1]
1	40.00 psi	40.00		Same		39.95 to 40.05 psi [EMU 0.01 psi][TUR 4.8.1]
I)	50.00 pei	50.D1		Same		49.95 to 50.05 psi [EMU 0.011 psi][TUR 4.4.1]
L	60.00 psi	60.01		Same		59.95 to 60.05 psi [EMU 0 013 psi][TUR 4 0.1]
1	70.00 psi	70.01		Same		69.95 to 70.05 psi [EMU 0.014 psi][TUR 3.7.1]
. I.	80.00 psi	80.01		Same		79 95 to 80 05 ps [EMU 0.015 ps][TUR 3.4.1]
1	90.00 ps/	90.01		Same		89.95 to 90.05 psi [EMU 0.015 psi][TUR 3.3.1]
1	100.00 psi	100.01		Same		99 95 to 100.05 psi (EMU 0.016 psi)[[TUR 3.1.1]
Decreasing Pressure Test	90.00 pei	10.06		Same		89.95 to 90.05 psi [EMU 0.015 psi][TUR 3,3:1]
1	80.00 psi	80.01		Same		79.95 to 80.05 psi [EMU 0.015 psi][TUR 3.4.1]
	70.00 psi	70.01		Same		69.95 to 70.05 psi [EMU 0.014 psi][TUR 3.7.1]
1	60.00 psi	60.01		Same		59.95 to 60.05 psi [EMU 0.013 psi][TUR 4.0:1]
1	50.00 psi	50.01		Same		49.95 to 50.05 psi [EMU 0.011 psi][TUR 4.4 1]
1	40.00 psi	40.01		Same		39.95 to 40.05 psi [EMU 0.01 psi][TUR 4.8:1]
1	30.00 psi	30.00		Same		29.95 to 30.05 psi [EMU 0.0092 psi][TUR 5.5:1]

Cole-Parmer

(D) DIGI-SENSE

	1	20.00 psi	e As Found	Out of Tel	As Left	Out of Tol	CALIDDATION	TOU FRANKE
	1		20.00		Same	CALCE IDI	19 95 to	20 05 psi
		10.00 psi	10.00		Same			psi)[TUR 1.6:1]
Re	Cero	0.000 psi					[EMU 0 007	10.05 psi psi][TUR 7 1:1]
	ference	0.000 ps	0.00		Same		Refere	nce Only
emperature: 2	1°C [7	alibration Perform	ad Day					
- the states Z	A PART AND A	liegler, Jeff	335 Metrolo	alat at	1007 5005		Reviewer:	A BREAK
lumidity: 42	583957	and the second se	ID e Title mussion of Intocal. The I standards maintained b I 2005. Guard Banding, J		7-327-5335	Pietronico	o, Mike	06/10/2019

Page 1 of 2

9.10 Appendix J: Certificate of Calibration for Pressure Gauge used in 8.3

625 East Bunker Court Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innocalsolutions.com

Manufacturer: Druck Inc.

Asset Number: CP307734

Serial Number: 5380820

Description:

Procedure:

Remarks:

Model Number: DPI 104 0-100 PSIG

Pressure, Digital Gauge 100psig

DS Universal Pressure Gauge-10

NIST Traceable **Calibration Report**

Reference Number: 1389873 PO Number: RANDD

PendoTECH 3490 US Route 1 Building 15F Princeton, NJ 08540 United States

> **Calibration Date:** Calibration Due Date: 06/22/2021 Condition As Found: Condition As Left:

06/22/2020 In Tolerance In Tolerance, No adjustment

NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the lab's standard operating procedures. No adjustments were made to the unit. -----

Asset No.	Manufacturer	Model No.	Description	Cal. Date	Due Date
CP144959	Fluke Corporation	PM600-A700K	Pressure, Measurement Mod -12.1 -100PSI	06/03/2020	06/30/2021

FUNCTION TESTED	Nominal Value	As Found	Out of Tel	As Left	Out of Tel	CALIBRATION TOLERANCE
Increasing	0.0000 psi	0.00		Same		-0.0500 to 0.0500 psi [EMU 0.00011 psi][TUR 468 1]
1	10.0000 psi	10.00		Same		9 9500 to 10 0500 psi [[EMU 0.0013 psi][TUR 38.1]
1	20.0000 psi	20.01		Same		19.9500 to 20.0500 psi [EMU 0.0054 psi][TUR 9.3:1]
1	30.0000 psi	30.01		Same		29.9500 to 30.0500 psi [IEMU 0.0059 psi][TUR 8.5.1]
1	40.0000 psi	40.01		Same		39.9500 to 40.0500 psi [IEMU 0.0069 psi][TUR 7.2.1]
1	50.0000 psi	50.01		Same		49.9500 to 50.0500 psi [IEMU 0.0079 psi][TUR 6.3.1]
1	60 0000 psi	60.02		Same		59 9500 to 60 0500 psi [IEMU 0 0089 psi][TUR 5 6 1]
	70 0000 psi	70.02		Same		69.9500 to 70.0500 psi [EMU 0.0099 psi][TUR 5.1.1]
1	80.0000 psi	80.02		Same		79.9500 to 80.0500 psi [EMU 0.011 psi][TUR 4.6.1]
1	90 0000 psi	90.03		Same		89.9500 to 90.0500 psi [EMU 0.012 psi][TUR 4.2.1]
1	100.0000 psi	100.03		Same		99 9500 to 100 0500 psi [EMU 0 013 psi][TUR 3.9 1]
Decreasing	ieq 0000.00	90.03		Same		89 9500 to 90 0500 psi [EMU 0 012 psi][TUR 4 2 1]
1	80.0000 psi	80.03		Same		79 9500 to 80 0500 psi [EMU 0 011 psi][TUR 4.6:1]
1	70.0000 psi	70.02		Same		69.9500 to 70.0500 psi [EMU 0.0099 psi][TUR 5.1.1]
1	60.0000 psi	60.02		Same		59 9500 to 60 0500 psi [EMU 0.0089 psi][TUR 5.6.1]
	50 0000 psi	50.02		Same		49 9500 to 50 0500 psi [EMU 0.0079 psi][TUR 6.3 1]
1	40.0000 psi	40.02		Same		39.9500 to 40.0500 psi [EMU 0.0069 psi][TUR 7.2.1]
	30.0000 psi	30.01		Same		29.9500 to 30.0500 psi [EMU 0.0059 psi][TUR 8.5.1]
1	20.0000 psi	20.01		Same		19.9500 to 20.0500 psi [EMU 0.0054 psi][TUR 9.3.1]

FUNC	TION TESTED	Nominal Value	Calibra As Found	Out of Tol	As Left	Out of Tol	CALIBRATION T	OLERANCE
		10 0000 psi	10.00		Same		9 9500 to 10 [EMU 0.0013 ps	0500 psi
	1:	0.0000 psi	0.00		Same		-0.0500 to 0 (EMU 0.00011 ps	0500 psi
Temperature: Humidity:	21° C 63% RH	Calibration Performed	By:		Sec. Sec.	Quality	v Reviewer:	
Rpt. No.;	1620311	Davis, Lou Name	373 Metro		47-327-5324	Ziegler,	Jeff	06/22/2020
Measurements re 2540 / 1994 - 100 uncertainty raco /	75/60 below 411 in 1	Rapp III NAL WINGLY WILLIAM DET ICRAIDE 10 SI units va natomal (SO 9200 94 and VSO 17728 J Jahrando conditions are zased o Jahrando conditions are zased SMO). Il reported on mia centrico	ession of Whitest "Th Isoderols maintained 017: Guard Banding or lest cesults tables	e results its by NST and if reported c within street	in this certificate	niate only to in compliance a applied at a	2-factor of 30% for lead	ANSINCSE points with a least

9.11 Appendix K: X-ray Certificate of Processing for section 7.4/8.4

■STERIS

Manual Certificate of Processing

Prepared For: PENDOTECH

Processing Run ID: 10834-40001554

Product Code	Product Lot Number	Quantity	UOM
N/A	NA	1	CS

Other Information: Description: Single Use Sensors. PO # 2016692

Processing Run Start Date/Time:	07/14/2021, 7:24AM CST
Processing Run End Date/Time:	08/19/2021, 7:28AM CST
Approximate Downtime (Hours):	0.00

Minimum Specified Dose (kGy):	50.0	Minimum Delivered	Dose (kGy):	61.8					
Maximum Specified Dose (kGy)	: 70.0	Maximum Delivered		64.5					
A nonconformity occurred duri	ng this irradiat								
Reference: NC-23394	•		•						
Comments: Dose added to mee	et requested de	ose range. Dose rang	ge within Custon	ner					
requested dose range.		•							
Latrice Sutherland, X Jutter 08/23/2021, 07:27AM CST QA Manager Approval / Date / Time (Print and Sign) Michael Ezzo 8/23/2021 10:42AM EST Quality Zone Director Approval / Date / Time (Print and Sign)									
Quality Zone Director Approval	/ Date / Time (Print and Sign)							
	, Date / Thine (i initia orginj							
2500 Commerce Drive me Libertyville, IL. 60048 11 847-247-4782 wit	DA, NRC, EPA, a ets the requireme 137. STERIS cer	re in compliance with ap nd OSHA) and provide se ints of FDA QSR, EN/ISO tifies that these processe and accuracy of the dosi	ervices under a quali 13485, and with EN d items received the	ty system which ANSI/AAMI/ISO indicated doses					
WI-01678 Form: 2 Rev:	0 Eff Date:	Oct 19, 2018 Status:	07b. Completed: All Gamma	Page 1 of 1					

Facilities

Date and Time Prepared: 08/23/2021 6:55AM	_ocation:RTC lethod:EBIR-03	<u>initial Final</u> <u>Seq Coordinate Barcode ID Insert Instrument</u> Dose (kGy) <u>Dose (kGy)</u> <u>Dose (kGy)</u>	1 1 0BX592076386 '0040 11-0186 0.0 62.9 13.1	1 1 0BX592026099 '0040 11-0186 0.0 0.0 49.8	1 2 0BX592076219 0040 11-0186 0.0 61.8 12.5	0040 11-0186 0.0 0.0	1 3 0BX592076365 '0040 11-0186 0.0 63.8 13.5	1 3 0BX592020005 '0040 11-0186 0.0 0.0 50.3	1 4 0BX592076319 0040 11-0186 0.0 61.8 12.8	1 4 0BX592020669 0040 11-0186 0.0 0.0 49.0	1 5 0BX592076103 0040 11-0186 0.0 64.5 13.6	1 5 0BX592026490 11-0186 0.0 50.9	Minimum Dose for Record (kGy): 61.8	Maximum Dose for Record (kGy): 64.5	Other Information: Refer to NC-23394. Measurement Source shows the acutal dose for each dosimeter location, the final dose reports the total dose for both dosimeters for each location. The dose reported on this record is one signnificant figure.	Prepared By Print Name / Title / Sign and Date: LOTA / Control of A Dec Monger , WWW 8-33-21 OA Approved Print Name / Title / Sign and Date: HOU/LU MONGE, OA TECH 1, MMM 8/13/21
	Processing Location:RTC Irradiator / Method:EBIR-03	Carrier Seg	-	-			-				· -	-	Mini	Maxi	Other Information: Refer the	Prepared By Print Name / QA Approved Print Name /

STERIS Manual Dosimetry Record (Alanine Dosimetry System) Prepared For: PENDOTECH Process Run ID: 10834-40001554 ate and Time Prepared: 08/23/2021 6:55AM Page 1 of 1

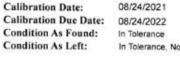
Eff Date: Oct 19, 2018 Status: 07b, Completed All Gamma Facilities WI-01678, Form 1, Revision: 0

9.12 Appendix L: Certificate of Calibration for Pressure Gauge used in 8.4

INNOVATIVE CALIBRATION SOLUTIONS

625 East Bunker Court Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innocalsolutions.com

NIST	Trac	eab	le
Calibra	tion	Rep	ort



PendoTECH 3490 US Route 1 Princeton, NJ 08540 United States

Reference Number: 1408403 PO Number: RANDD OK TOUSE

Ume 60 Soft

Manufacturer: Digi-Sense 68349-06 Model Number: Description: Pressure, Digital Gauge, 0 to 100 psig CP355333 Asset Number: Serial Number: 1912310225 DS Universal Pressure Gauge-10 Procedure:

In Tolerance, No adjustment

Remarks: NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the lab's standard operating procedures. No adjustments were made to the unit. Standards H41 .

	Standards Utilized								
Asset No.	Manufacturer Model No. Description		Description	Cal. Date	Due Date				
CP144959	Fluke Corporation	PM600-A700K	Pressure, Measurement Mod -12.1 -100PSI	07/08/2021	07/31/2022				

FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
Increasing	0.000 psi	0.00		Same		-0.250 to 0.250 psi [EMU 0.00058 psi][TUR 428 1]
1	10.000 ps	9.98		Same		9.750 to 10.250 psi [EMU 0.0014 psi][TUR 175.1]
	20.000 ps/	20.01		Same		19 750 to 20 250 psi [EMU 0.0054 psi][TUR 46 1]
L.	30 000 psi	30.02		Same		29.750 to 30.250 psi [EMU 0.0059 psi][TUR 42:1]
	40.000 psi	40.02		Same		39 750 to 40 250 psi [EMU 0.0069 psi][TUR 36 1]
1	50.000 psi	50.01		Same		49.750 to 50.250 psi [EMU 0.0079 psi][TUR 32.1]
I.	60.000 psi	60.01		Same		59.750 to 60.250 psi [EMU 0.0089 psi][TUR 28.1]
1.	70.000 psi	70.02		Same		89 750 to 70 250 psi [EMU 0.0099 psi][TUR 25:1]
1	80.000 psi	80.01		Same		79.750 to 80.250 psi [EMU 0.011 psi][TUR 23.1]
I.	90.000 psi	90.01		Same		89 750 to 90 250 psi [EMU 0.012 psi][TUR 21.1]
L	100.000 psi	100.02		Same		99.750 to 100.250 psi [EMU 0.013 psi][TUR 19:1]
Decreasing	90.000 psi	90.02		Same		89.750 to 90.250 psi [EMU 0.012 psi][TUR 21:1]
	80.000 psi	80.02		Same		79 750 to 80 250 psi [EMU 0.011 psi][TUR 23 1]
L.	70 000 psi	70.02		Same		69.750 to 70.250 psi [EMU 0.0099 psi][TUR 25.1]
1	60.000 psi	60.03		Same		59 750 to 60 250 psi [EMU 0 0089 psi][TUR 28 1]
1	50.000 psi	50.02		Same		49.750 to 50.250 psi [EMU 0.0079 psi][TUR 32.1]
1	40.000 psi	40.02		Same		39.750 to 40.250 psi [EMU 0.0069 psi][TUR 36:1]
1	30.000 ps	30.03		Same		29 750 to 30 250 psi [EMU 0.0059 psi][TUR 42:1]
1	20.000 psi	20.01		Same		19 750 to 20 250 psi [EMU 0.0054 psi][TUR 46:1]

Page 1 of 2

Calibration Data								
FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE		
	10.000 psi	9.99		Same		9.750 to 10.250 psi [EMU 0.0014 psi][TUR 175.1]		
1	0.000 psi	0.00		Same		-0.250 to 0.250 psi [EMU 0.00058 psi][TUR 428 1]		

Temperature: 19° C Humidity: 61% RH		Calibration Performe	d By:		Quality Reviewer:		
Rpt. No.:	1662895	Fitzsimons, Sean	357	Metrologist	847-327-5305	Alexander, James	08/24/2021
		Name	ID #	Title	Phone	Name	Date

Å

