Validation Guide for PendoTECH[®] Single Use Conductivity Sensors

Revision 2

www.pendotech.com

CONFIDENTIAL

Validation Guide for PendoTECH Single Use Conductivity Sensors

Copyright © 2007-2022, PendoTECH

All rights reserved. No part of this publication may be reproduced, stored in an electronic retrieval system, or transmitted, in any form or by any means, whether electronic, mechanical, by photocopying, or otherwise, without the written consent of PendoTECH.

PendoTECH assumes no responsibility for the use of this product except for what is covered in the Limited Warranty and Terms and Condition of Sale for products. The products are not designed, intended or authorized for use as components in life support or medical devices. They are not designed for any application in which the failure of the product could result in property damage, personal injury, or death.

The sensors are designed for use with the PendoTECH products. Other sensor monitors must be tested for compatibility and PendoTECH assumes no responsibility of compatibility of performance with other instruments. The end user must take proper precautions required to make sure there is no damage their monitor.

Revision 2 Latest Revision Date Printed: September 26, 2022

Table of Contents

1		RODUCTION	
		Product Overview	
	1.2	Purpose of this Document	5
	1.3	Qualification Testing Comments	5
2	PRC	DDUCT CATALOG NUMBERS	6
3	MAI	NUFACTURING INFORMATION	6
-		Product is manufactured in an FDA Registered, ISO 13485:2016 certified facility	
		Product manufacturing environment	
		Polysulfone molded product body- 100% visual inspection	
		Biocompatibility	
		Each product is tested during manufacturing to verify proper performance	
		RoHS Statement	
		REACH Statement	
4	MA	FERIALS	7
-		Wet Volume and Surface Area	
		Fluid path components	
5		EMBLED SENSOR CERTIFICATIONS	
5		USP Class VI Statement	
		USP 661 post gamma irradiation	
		ISO 10993-5 post gamma irradiation	
		Particulates	
		Bioburden	
		Endotoxins	
		Bacteriostatic and Fungistatic (B&F)	
6	PER	FORMANCE SPECIFICATIONS	9
Ũ		ute	
		cation	
		ication Test Information	
7	PEN	IDOTECH TEST METHOD SUMMARY	.10
		Pressure limit of 75 psi	
	7.2	Accuracy and Cell Constant Determination	.10
	7.3	Temperature Accuracy	.10
	7.4	Shelf life of 3 years	.10
		Gamma compatibility	
		X-ray Compatibility	
		Sensor Use in Continuous Bioprocessing	
		Operating Temperature range 2 to 50°C	
	7.9	Storage Temperature -25 to 65°C	.11
8		IDOTECH TEST RESULTS	
		Pressure limit of 75 psi	
		Accuracy and Cell Constant Determination	
		Temperature Accuracy	
		Shelf life of 3 years	
		Gamma compatibility	
		X-ray Compatibility Sensor Use in Continuous Bioprocessing	
~			
9		ENDICES	
		Appendix A- Assembled Sensor Certificate: Class VI post 40kGy gamma irradiation	
		Appendix B- Assembled Sensor Certificate: USP 661 post gamma irradiation	
		Appendix C: Assembled Sensor Certificate: ISO 10993-5 post gamma irradiation Appendix D: Assembled Sensor Certificate: Particulates	
		Appendix D: Assembled Sensor Ceruncate: rarticulates	
	9.5	Appendix E: Assembled Sensor Certificate: Bioburden	.41
	9.5 9.6		.41 .44

9.8	Appendix H: Certificates of Gamma Irradiation for Gamma Compatibility Investigation (7.5)	54
9.9	Appendix I: Certificates of Calibration for Pressure Gauge used in 8.1	55
9.10	Appendix J: Certificate of Calibration for Pressure Gauge used in 8.4	57
9.11	••	
	Appendix L: X-ray Certificate of Processing for Section 8.6	

1 INTRODUCTION

1.1 Product Overview

1.1.1 PendoTECH's Single-Use Conductivity Sensors[™], conductivity monitor (CMONT), and transmitter (CT-2) integrate for highly accurate conductivity and temperature measurement without the need to calibrate the conductivity electrode, because of its predetermined cell constant. For use in critical bioprocess operations, the CMONT reads conductivity and temperature for up to two sensors. No calibration is required because the cell constant must be entered when a new sensor is connected. There is temperature normalization to 25°C with an adjustable mS/ °C factor. The monitor has 4 – 20mA analog outputs for both conductivity and temperature and an RS232 output for data collection to a PC. For easy integration with bioprocessing skids, the CT-2 transmitter has a convenient DIN rail mountable and compact design. The transmitter reads the raw conductivity and the temperature value from a single conductivity sensor and calculates the normalized value at 25°C. The normalized conductivity value is transmitted via the 4-20mA signal. The analog output must be multiplied by the cell constant to determine the corrected reading.

1.2 Purpose of this Document

1.2.1 The purpose of this document is to assist end users in qualifying the sensors for use in their process. Each prospective user must test the sensor for its proposed application to determine its suitability for the purpose intended prior to incorporating the sensor to any process or application. The sensor is not intended for use as a component in life support. The sensor is not designed for any application in which the failure of the product could result in property damage, personal injury, or death. Proper Safeguards must be put into place for the process in which the sensor is used.

1.3 Qualification Testing Comments

1.3.1 Testing was completed to qualify the product for use in bioprocess applications. In the product manufacturing process, stainless steel tubes are installed into the polysulfone product bodies. Pre-existing specifications on certain materials used in the Conductivity sensor devices are as noted.

2 PRODUCT CATALOG NUMBERS

PendoTECH Product Catalog Numbers Covered in this Document							
Part Number	Description						
CONDS-N-012	Single Use Conductivity Sensor, non-sterile, 0.125 inch hose barb, Polysulfone						
CONDS-N-025	Single Use Conductivity Sensor, non-sterile, 0.25 inch hose barb, Polysulfone						
CONDS-N-050	Single Use Conductivity Sensor, non-sterile, 0.50 inch hose barb, Polysulfone						

3 MANUFACTURING INFORMATION

3.1 Product is manufactured in an FDA Registered, ISO 13485:2016 certified facility

3.2 Product manufacturing environment

3.2.1 Final assembly of the flow path components is performed in a laminar flow hood (Class 5 clean/controlled environment)

3.3 Polysulfone molded product body- 100% visual inspection

- 3.3.1 Embedded Particulate: Maximum 2 allowed per part. Maximum size of 0.08 mm² in the fluid path. Maximum size of 0.2 mm² anywhere else.
- 3.3.2 Embedded Bubbles: Maximum 2 allowed per part. Maximum size of 0.08 mm² in the fluid path. Maximum size of 0.2 mm² anywhere else.
- 3.3.3 Additional Inspection Criteria: Proprietary information on file at PendoTECH

3.4 Biocompatibility

- 3.4.1 All plastic materials in contact with product fluid path meet USP Class VI requirements
- 3.4.2 All plastic materials in contacts with product fluid are ADCF (Animal Derived Component Free)

3.5 Each product is tested during manufacturing to verify proper performance

- 3.5.1 100% leak testing on the liquid side
- 3.5.2 Every product is tested electrically to confirm proper electrical performance
- 3.5.3 100% accuracy testing to determine unique cell constant for each sensor
 - 3.5.3.1 Every sensor is tested with NIST traceable conductivity standards to calculate cell constants
- 3.5.4 Each thermistor is tested to verify accuracy
 - 3.5.4.1 Each thermistor is tested at 10°C to confirm $4482\Omega \pm 0.1$ °C
 - 3.5.4.2 Each thermistor is tested at 25°C to confirm $2252\Omega\pm0.1^\circ C$
 - 3.5.4.3 Each thermistor is tested at 40°C to confirm $1200\Omega \pm 0.1$ °C
 - 3.5.4.4 Each product is tested to confirm 500VDC isolation minimum between thermistor assembly and stainless steel tube

3.6 RoHS Statement

3.6.1 All sensors are in conformity with RoHS 3, EU Directive 2015/863.

3.7 REACH Statement

3.7.1 PendoTECH hereby certifies that its single use conductivity sensors meet the requirements of Directive EC 1906/2006 commonly known as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) and that to the best of its knowledge its products are free of any materials on the Candidate List of Substances of Very High Concern (SVHC) as stated by the European Chemical Agency (ECA) and that none of these materials are added or used in any of its manufacturing processes. This declaration is effective with production after September 11, 2015 for all Conductivity products.

4 MATERIALS

4.1	Wet	Volume	and	Surface Area
-----	-----	--------	-----	---------------------

Part Number	Wet Volume	Wet Surface
CONDS-N-012	0.030 in ³	0.80 in ²
CONDS-N-025	0.048 in ³	0.91 in ²
CONDS-N-050	0.269 in ³	3.10 in ²

4.2 Fluid path components

- 4.2.1 Product body- Polysulfone: is Solvay Udel® P-1700: Data provided by suppliers state that they meet USP Class VI; claimed to be animal derived component free by suppliers (letters on file at PendoTECH); Material testing by PendoTECH meets USP Class VI post 40 kGy gamma irradiation (see Appendix A)
- 4.2.2 Stainless Steel Electrode: 304 Stainless Steel, also houses temperature sensing element (thermistor)
- 4.2.3 Adhesive: Proprietary formulation; Data provided by supplier states meets USP Class VI; claimed to be animal derived component free by supplier (letter on file at PendoTECH)

5 ASSEMBLED SENSOR CERTIFICATIONS

5.1 USP Class VI Statement

5.1.1 All polymeric materials in contact with product fluid path meet the acceptance criteria for USP Class VI Test (with 14 day subcutaneous implants) after exposure to 42 to 51 kGy of gamma irradiation. Study Summaries are in Appendix A and full reports are on file at PendoTECH. The test articles evaluated were polysulfone pressure sensors, however, the qualification holds true for conductivity sensors as the fluid path components are 99% identical. The only difference is the presence of 304 Stainless Steel probes in conductivity sensors, which are not polymeric materials and therefore not subject to USP Class VI testing.

5.2 USP 661 post gamma irradiation

5.2.1 Fully assembled Single Use Conductivity sensors meet the criteria of the USP Physicochemical Test for Plastics based upon Nonvolatile Residue, Residue on Ignition, Heavy Metals, and Buffering Capacity after exposure to 27.5 to 45 kGy of gamma irradiation. The study was conducted based upon the following references: USP 38, National Formulary 33, 2015. Monograph <661> Containers, Physicochemical Tests-Plastics. Test Result Certificates are in Appendix B.

5.3 ISO 10993-5 post gamma irradiation

5.3.1 Fully assembled Single Use Conductivity sensors meet the requirements of ISO 10993-5, Biological Evaluation of Medical Devices – Part5: Tests for In Vitro Cytotoxicity and are not considered to have a cytotoxic effect. Test Result Certificates are in Appendix C and full reports are on file at PendoTECH.

5.4 Particulates

5.4.1 Samples of conductivity sensors were randomly selected and sent to Toxikon for particulate testing. Testing was conducted in accordance with the following references: USP 41, National Formulary 36, 2018. <788> Particulate Matter in Injections. The resulting extracts were analyzed using a Particle Measuring System, Automated Parenteral Syringe Sample (APSS)-200 with channel settings of 10 µm and 25 µm. See Test Report in Appendix D for counts of each particle size.

5.5 Bioburden

5.5.1 Samples of conductivity sensors were randomly selected and sent to Toxikon for bioburden testing. Testing was performed in accordance with ANSI/AAMI/ISO 11737-1:2018. Following validation, the following results were obtained: Average Colony Forming Units (CFU)/Plate = 15.0 and average CFU/Device = 31. Test reports are in Appendix E.

5.6 Endotoxins

5.6.1 Samples of Conductivity sensors post 40 kGy gamma irradiation were submitted for Chromogenic Endotoxin Testing. The study was based upon the following references: USP 42 NF 37, 2019. <85> Bacterial Endotoxin Test. ISO 10993-12, 2012. Following test validation, three test articles gave the following results: < 0.00500 EU/mL and < 0.6 EU/device of bacterial endotoxin and meets USP <85>, Bacterial Endotoxin Test. Study validation and sample testing reports are in Appendix F.

5.7 Bacteriostatic and Fungistatic (B&F)

5.7.1 B&F testing was carried out by the method suitability test via membrane filtration – USP. The study was conducted with accordance to the following references: USP 41, NF 36, 2018. <71> Sterility Tests. ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories. Testing determined the sensors are considered non-bacteriostatic and non-fungistatic, according to the USP guidelines. The test articles evaluated were polysulfone pressure sensors, however, the qualification holds true for conductivity sensors as the fluid path components are 99% identical. The major difference is the presence of 304 Stainless Steel probes in conductivity sensors, which would not affect the bacteriostatic and fungistatic properties of the sensor. Test reports are in Appendix G.

6 PERFORMANCE SPECIFICATIONS

Attribute	Specification	Qualification Test Information
Accuracy	From 0.1 to 2 mS/cm +/- 0.1 mS/cm; 2 to 50 mS/cm +/- 5% of reading; 50 to 100 mS/cm typically +/- 5% of reading	Qualification Testing by PendoTECH
Temperature Accuracy	Better than +/- 0.2°C	Qualification Testing by PendoTECH
Pressure Range	75 psi max	Qualification Testing by PendoTECH
Gamma Irradiation	Up to 50 kiloGrays	Qualification Testing by PendoTECH
X-ray Irradiation	Up to 50 kiloGrays	Qualification Testing by PendoTECH
Shelf life	3 years	Qualification Testing by PendoTECH
Operating Temperature	2°C to 50°C (other ranges with process qualification)	Qualification Testing by PendoTECH
Storage Temperature	-25°C to 65°C	Raw Material Specification
Connector	Custom molded 4 pin connector- Rating: IP67 when connected to reusable cable	Qualification Testing by certified test lab Reports on file at PendoTECH

7 PENDOTECH TEST METHOD SUMMARY

7.1 Pressure limit of 75 psi

7.1.1 In order to further qualify conductivity sensors to be physically compatible at pressures of 75 psi, high pressure leak and burst testing was carried out. 9 sensors, 3 each from 3 different lots, were randomly selected for testing. These sensors were first exposed to 100 psi and visually inspected for leaks using soapy water. Afterwards, 150+ psi was applied to the sensors to verify sensor integrity by checking for bursts. The final test pressure and result for each sensor was recorded.

7.2 Accuracy and Cell Constant Determination

- 7.2.1 During manufacturing every Conductivity sensor is tested across its full-scale range (0–100mS). This data is used to calculate the Cell Constant (K), unique to every conductivity sensor. For testing, every sensor is initially assigned a K of 1.000 and conductivity readings are recorded using a CMONT and NIST traceable conductivity standard solutions. Then, a MATLAB script is used to determine the optimal cell constant for each sensor using the data collected. If the MATLAB script cannot calculate a Cell Constant that will bring the sensor within PendoTECH's accuracy specifications, then that sensor is rejected.
- 7.2.2 In order to validate the accuracy of PendoTECH conductivity sensors and the procedure for determining each sensor's cell constant, conductivity testing was carried out. 10 Conductivity sensors were retested after their initial testing and cell constant determination. Each sensor was connected to a CMONT that was different from the original CMONT it was initially tested on. The sensors were then retested using conductivity standard solutions ranging from 2 mS to 100 mS. The results were recorded and compared to the sensor's accuracy specification.

7.3 Temperature Accuracy

7.3.1 PendoTECH has carried out a study challenging the thermistors manufacturing claim of "better than $+/-0.2^{\circ}C$ (typically better than $+/-0.1^{\circ}C$)", in the range 0 to 70°C. Testing was performed on PendoTECH Single Use Temperature sensors, which have the same design, consist of the same materials, are manufactured in the same location, and use the same temperature sensing element. The only difference is that temperature sensors do not have the two additional electrodes for measuring conductivity. This report covers the results of special testing requested by PendoTECH to verify the temperature accuracy claimed on the thermistor. The normal production process measures the thermistor prior to assembly into the full sensor, and between 25°C and 45°C. This testing covers the full range traditionally claimed by PendoTECH: 0°C to 70°C. This report addresses special testing on fully assembled PendoTECH temperature sensors, which possess the same thermistor in conductivity sensors. The raw resistance measurements demonstrate that the sensors are well within the $\pm 0.2^{\circ}$ C tolerance band/specification across the entire 0°C to 70°C range. Only a few measurements were even outside of the ± 0.1 °C tolerance band. Capability analysis shows that the thermistor manufacturing process is capable of consistently meeting the requirement. Results of the study are detailed in the report below.

7.4 Shelf life of 3 years

- 7.4.1 PendoTECH has determined a 3 year shelf life for its Single Use Conductivity sensors by validating the performance of real time aged sensors. Samples of conductivity sensors were placed in real time storage, and over a 3 year window, periodically removed for accuracy testing. Reported here are the results after 12 months, 24, month, 32 months, and 36 months of real time storage. All sensors were checked for accuracy across their full conductivity range of 0 to 100 mS using the cell constant determined prior to storage and conductivity standards.
- 7.4.2 To validate sensor integrity after 3 years of storage, samples of conductivity sensors were randomly selected for accelerating aging and leak testing. 9 Conductivity sensors from two different lots were gamma irradiated at 37 kGy. The sensors were then accelerated aged at 60°C for 14 weeks, simulating 3 years of aging. The sensors were then checked for leaks at 100 psi.

7.5 Gamma compatibility

7.5.1 PendoTECH has performed internal experiments with its Single Use Conductivity Sensors to qualify their use post gamma irradiation (Certificate in Appendix H). In order to confirm functionality, sensors were tested pre and post gamma irradiation and the results were compared to ensure that they did not change significantly. Additionally, leak testing was performed to validate sensor integrity following gamma irradiation. Sensors from the same lot were also gamma irradiated and then checked for leaks at 60 psi.

7.6 X-ray Compatibility

7.6.1 In accordance with the BioProcess System's Alliance (BPSA) white paper on the requirements and risk evaluation of the X-ray sterilization of single use equipment, a risk assessment was performed to identify the tests required to qualify PendoTECH Single Use Conductivity Sensors for X-ray irradiation for a dose > 50 kiloGrays (Certificate in Appendix L). As these sensors contain no active electronics and are composed of robust, gamma compatible materials, they were deemed to be very low risk. Basic functionality and leak testing was still performed to demonstrate compatibility as a precaution. Testing procedures and results are documented below.

7.7 Sensor Use in Continuous Bioprocessing

7.7.1 PendoTECH carried out a continuous 35 day static experiment on its Single Use Conductivity sensors to evaluate their performance in a continuous bioprocess. Two sensors were placed in known conductivity standards, and closely monitored over the course of 35 days. The sensors' performances were trended throughout the experiment to validate compatibility for continuous bioprocessing.

7.8 Operating Temperature range 2 to 50°C

7.8.1 PendoTECH has determined a 2 to 50°C operating temperature range for Single Use Conductivity sensors based on thermistor qualification. PendoTECH has on file information from all sensor component material manufacturers stating very wide operating temperature ranges well outside the 2 to 50°C claim. Other operating temperature ranges may be viable with proper end user process qualification. PendoTECH monitors are set to a default temperature normalization to 25°C with a factor of 2.1% per °C.

7.9 Storage Temperature -25 to 65°C

7.9.1 PendoTECH has determined a -25 to 65°C storage temperature range for Single Use Conductivity sensors based on raw material specifications. PendoTECH has on file information from all sensor component material manufacturers stating very wide storage temperature ranges well outside the -25 to 65°C claim. For consistency and a healthy safety factor, PendoTECH has narrowed the range to be the same as other PendoTECH single use sensors. Other storage temperature ranges may be viable with proper end user process qualification.

8 PENDOTECH TEST RESULTS

8.1 Pressure limit of 75 psi

- 8.1.1 Leak and Burst Testing
 - 8.1.1.1 Procedure- 9 sensors, 3 each from 3 different lots, were randomly selected for testing. First, the sensors were exposed to 100 psi and visually inspected for leaks. Soapy water was placed on the sensor test port and around the sensor cap to easily identify any leaks. Afterwards, these sensors were exposed to pressures of 150+ psi and checked for bursts to verify sensor integrity. The final test pressure and burst/leak result for each sensor is reported here.
 - 8.1.1.2 Calibrated Pressure Gauge: Model: Druck DPI 104 S/N: 2936090 (Cert in Appendix I)
 - 8.1.1.3 Acceptance Criteria: No identifiable leaks after exposure to 90 psi for 100 seconds and no burst.
 - 8.1.1.4 Data Summary:

Sensor	Lot #	Leak Result	Burst Result	Final Burst Pressure (psi)
1	19G96991	Pass	Pass	160.62
2	19G96991	Pass	Pass	160.64
3	19G96991	Pass	Pass	160.65
4	19D86473	Pass	Pass	160.65
5	19D86473	Pass	Pass	160.65
6	19D86473	Pass	Pass	160.63
7	19D90369	Pass	Pass	160.64
8	19D90369	Pass	Pass	160.65
9	19D90369	Pass	Pass	160.64

8.1.1.5 Conclusion: All sensors passed leak and burst testing and are therefore suitable for exposure up to a maximum pressure of 75 psi

8.2 Accuracy and Cell Constant Determination

- 8.2.1 Accuracy Testing:
 - 8.2.1.1 Procedure- 10 Conductivity sensor were retested after their initial testing and cell constant determination. Each sensor was connected to a CMONT that was different from the original CMONT it was initially tested on. The sensors were then retested using conductivity standard solutions ranging from 2 mS to 100 mS.
 - 8.2.1.2 Acceptance Criteria- All sensors within accuracy specification

Conductivity Sensor Accuracy Specification:

From 0.1 to 2 mS/cm +/- 0.1 mS/cm; 2 to 50 mS/cm +/- 5% of reading; 50 to 100 mS/cm typically +/- 5% of reading

8.2.1.3 Data Summary:

Concor	Lot #	CMONT	Original Conductivity Reading (K = 1) mS						Calculated
Sensor	LUI #	S/N	2	10	15	30.1	50	100	K Value
1			2.13	10.64	15.89	31.46	53.15	105.62	0.947
2			2.28	11.23	16.71	33.00	55.48	110.58	0.894
3			2.18	10.90	16.30	32.00	54.48	107.77	0.929
4			2.23	11.18	16.59	32.89	55.71	109.47	0.905
5	19D86473	3270	2.29	11.22	16.69	32.84	55.25	107.67	0.894
6	19000473	3270	2.21	10.99	16.41	32.13	54.55	106.92	0.920
7			2.25	11.02	16.40	32.19	54.53	106.72	0.911
8			2.20	10.91	16.30	32.18	54.42	107.66	0.922
9			2.21	10.92	16.31	32.08	54.25	106.91	0.921
10			2.32	11.05	16.15	32.37	54.58	106.39	0.895

Raw Data for Calculating Cell Constants

Soncor	CMONT	Calculated	Corrected	onstant va		ed Conduc	tivity Rea	ding mS	
Sensor	S/N	K Value	Value Reading		10	15	30.1	50	100
1	3136	0.947	Reading (mS)	2.02	9.97	14.92	28.97	48.04	92.08
1	5120	0.947	% Error	1.00%	-0.30%	-0.53%	-3.75%	-3.92%	-7.92%
2	3136	0.894	Reading (mS)	1.95	9.93	14.83	29.06	49.01	97.67
Z	5120	0.894	% Error	-2.50%	-0.70%	-1.13%	-3.46%	-1.98%	-2.33%
3	3098	0.929	Reading (mS)	2.06	10.15	15.1	29.61	49.58	97.84
5	2098	0.929	% Error	3.00%	1.50%	0.67%	-1.63%	-0.84%	-2.16%
4	3098	0.905	Reading (mS)	1.94	9.96	14.86	29.2	48.94	97.12
4	2098	0.905	% Error	-3.00%	-0.40%	-0.93%	-2.99%	-2.12%	-2.88%
5	3136	0.894	Reading (mS)	2.01	9.92	14.83	29.06	48.71	96.42
5	3130	0.894	% Error	0.50%	-0.80%	-1.13%	-3.46%	-2.58%	-3.58%
6	3098	0.92	Reading (mS)	2.05	10.12	15.03	29.39	49.18	96.16
0	2098	0.92	% Error	2.50%	1.20%	0.20%	-2.36%	-1.64%	-3.84%
7	3098	0.911	Reading (mS)	1.99	9.81	14.79	29	48.35	95.19
/	2098	0.911	% Error	-0.50%	-1.90%	-1.40%	-3.65%	-3.30%	-4.81%
8	3136	0.922	Reading (mS)	2.03	9.96	14.93	28.97	47.76	91.22
0	5120	0.922	% Error	1.50%	-0.40%	-0.47%	-3.75%	-4.48%	-8.78%
9	2126	0.921	Reading (mS)	1.94	9.89	14.86	29.18	48.96	97.79
5	3136	0.921	% Error	-3.00%	-1.10%	-0.93%	-3.06%	-2.08%	-2.21%
10	3098	0.895	Reading (mS)	1.95	9.78	14.73	29.07	48.61	96.2
10	3098	0.895	% Error	-2.50%	-2.20%	-1.80%	-3.42%	-2.78%	-3.80%

Cell Constant Validation

8.2.1.4 Conclusion: All sensors were within PendoTECH's accuracy specification using the calculated cell constant determined for each sensor.

8.3 Temperature Accuracy

8.3.1 See Report below

Special Test Report for PendoTECH Single Use Temperature Sensor[™] TEMP-N-050 TESS-ANDO-502-R000017

Revision: A

PURPOSE

This report covers the results of special testing requested by PendoTECH to verify the temperature accuracy claimed on the thermistor. The normal production process measures the thermistor prior to assembly into the full sensor, and between 25 °C and 45 °C. This testing covers the full range traditionally claimed by PendoTECH: ± 0.2 °C from 0°C to 70 °C.

SCOPE

This report addresses special testing on fully assembled PendoTECH sensors. TEMP-N-050 was chosen as the representative part, since it has the largest flow path making it the most practical to measure in a controlled bath.

EXECUTIVE SUMMARY

The raw resistance measurements demonstrate that the sensors are well within the ± 0.2 °C tolerance band/specification across the entire 0 °C to 70 °C range. Only a few measurements were even outside of the ± 0.1 °C tolerance band. Capability analysis shows that the thermistor manufacturing process is capable of consistently meeting the requirement.

DEVIATIONS

One sensor was damaged during testing and could not be measured at 70 °C. Therefore, only 44 data points were used in that particular analysis.

TEST LOCATION

Testing was performed at TESS.

EXPERIMENTAL SETUP

TEST DESCRIPTION

This test shall verify sensor performance in terms of temperature accuracy.

Test Category	Description/Criteria	Measurement
	Resistance @ $0^{\circ}C = 7278 - 7428 \Omega$	Resistance (Ω)
Temperature Accuracy (±0.2 °C)	Resistance @ $40^{\circ}C = 1189 - 1209 \Omega$	Resistance (Ω)
	Resistance @ $70^{\circ}C = 391.8 - 397.2 \Omega$	Resistance (Ω)

SUPPORTED EQUIPMENT AND MATERIALS

1. Constant Temperature Bath System:

- a. A 3M Novec 7200 Bath (asset number 1436) suitable for use at 0°C 70°C.
- b. Agilent Autoranging Microvolt Digital Multimeter (asset number 3367) with calibration traceable to NIST.
- c. Check resistor with calibration traceable to NIST.
- d. Temperature bath setup probe Fluke 5616-12 (asset number 32175) with calibration traceable to NIST.
- e. Measurement cables suitable for use with product.

ORIGIN OF SAMPLES

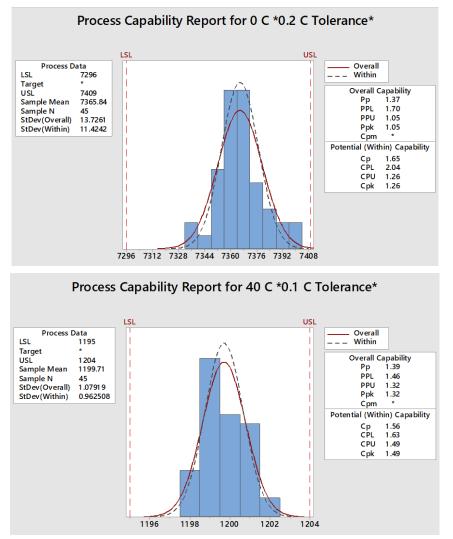
Samples were built according to the normal TEMP-N-050 process, but with an attached Temporary Deviation Authorization stating that the parts would be handed over to R&D prior to the final labeling and packaging steps. Three lots of 15 parts each were used for the test. The corresponding work order numbers were 59300, 59301, and 59302.

PROCEDURE

- 1.0 3M Novec Bath set to 0 °C or adjust and calibrate one according to SOP900-1027.
- 2.0 Connect the sensor to the Ohmmeter using a 2-pin Molex adaptor cable.
- 3.0 Place the sensor in the holding fixture and orient the flow path to the direction of fluid flow in the bath. Immerse the bottom part of the sensors in the fluid, but leave the upper portion out of the bath.
- 4.0 Wait for the resistance reading to settle, then record the measured resistance. This may take several minutes.
- 5.0 Repeat 2.0 through 4.0 for all sensors.
- 6.0 Recalibrate the bath to 40 °C and repeat all steps.
- 7.0 Recalibrate the bath to 70 °C and repeat all steps.

Test Category	Description/Criteria	Lower Limit	Nominal	Upper Limit	Cpk
	Resistance @ $0^{\circ}C = 7315 - 7391 \Omega$	7278	7353	7428	0.85
Temperature	Resistance @ $40^{\circ}C = 1195 - 1204 \Omega$	1189	1200	1209	0.85
Accuracy	Resistance @ $70^{\circ}C = 393.1 - 395.8 \Omega$	391.8	394.5	397.2	0.85

PASS / FAIL CRITERIA


RESULTS

In the 0 °C bath, 45 of 45 sensors measured within the 0.2 °C acceptable range of 7278 Ω - 7428 Ω , and 42 of 45 sensors measured within the tighter 0.1 °C range of 7315 Ω - 7391 Ω .

In the 40 °C bath, 45 of 45 sensors measured within the tighter 0.1 °C range of 1195 Ω - 1204 Ω .

In the 70 °C bath, 44 of 44 sensors measured within the tighter 0.1 °C range of 393.5 Ω - 395.8 Ω .

Capability analysis on these measurements revealed that the current thermistor manufacturing process and testing regimen is quite capable of consistently delivering sensors meeting the \pm 0.2 °C accuracy limit. Figures 1, 2, and 3 below represent the capability analysis from Minitab for measurements at 0 °C, 40 °C, and 70 °C respectively. Note that the tolerance used in Figures 1 & 3 is the full range, while Figure 2 uses the tighter \pm 0.1 °C tolerance. All three charts show Cpk numbers of 1.26 and greater. The measurements at 40 °C actually have the highest Cpk value despite using the tighter tolerance. This is a feature of the thermistor testing regimen, which requires very high accuracy in the middle of the range in order to maintain acceptable accuracy at the edges of the range.

8.3.1 Conclusion: All sensors were within the thermistor specification of ± 0.2 °C from 0 °C to 70 °C, validating the accuracy of the thermistor

8.4 Shelf life of 3 years

- 8.4.1 3 Year Real Time Aging Accuracy Testing
 - 8.4.1.1 Procedure- CONDS-N-025 sensors from Lot# 16M46192 were stored in ambient conditions and real time aged to validate the shelf life of PendoTECH's single use conductivity sensors. After determining the cell constant for each sensor, the sensors were sealed in moisture barrier bags, and kept in storage for 3 years. Over this 3 year window, sensors were periodically removed for performance testing. The sensors were checked for accuracy across their full range using conductivity standard solutions with values of 2, 10, 15, 30.1, 50, and 100 mS. Sensors were connected to a CMONT and the Cell constant determined during manufacturing was entered. Below are the results for sensors after 12 months, 24 months, 32 months, and 36 months of real time storage.

8.4.1.2 Acceptance Criteria- All sensors within accuracy specification

Conductivity Sensor Accuracy Specification:

From 0.1 to 2 mS/cm +/- 0.1 mS/cm; 2 to 50 mS/cm +/- 5% of reading; 50 to 100 mS/cm typically +/- 5% of reading

Cardial Number	T		Conductivity Reading (mS)						
Serial Number	Time in storage	CMONT S/N	2	10	150	30.1	50	100	Result
1	6 months	3270	2.00	10.13	15.21	29.66	50.09	103.36	Pass
2	6 months	3270	2.00	10.23	15.12	29.84	49.99	102.87	Pass
3	6 months	3099	2.05	10.29	15.40	29.77	49.39	98.47	Pass
4	6 months	3099	2.03	10.30	15.37	29.92	49.95	101.39	Pass
5	12 months	3270	1.95	10.04	15.10	29.34	48.99	99.23	Pass
6	12 months	3270	1.99	10.20	15.24	29.54	49.05	98.41	Pass
7	12 months	3099	1.99	10.13	15.07	28.99	48.10	94.89	Pass
8	12 months	3099	2.00	10.21	15.24	29.64	49.48	100.99	Pass
21	24 months	3270	1.96	10.01	14.88	29.53	48.04	91.88	Pass
22	24 months	3270	1.97	10.12	15.20	30.35	50.07	99.24	Pass
23	24 months	3099	1.98	10.16	15.14	30.40	50.43	100.32	Pass
24	24 months	3099	1.94	9.94	14.89	29.93	48.81	95.98	Pass
29	32 months	3270	1.97	10.01	15.10	29.93	49.92	98.58	Pass
30	32 months	3270	2.01	10.19	15.37	30.36	50.25	99.61	Pass
31	32 months	3099	2.00	9.99	15.00	29.29	47.65	90.74	Pass
32	32 months	3099	2.01	10.11	15.19	29.55	49.01	94.45	Pass
37	36 months	3270	1.99	10.01	15.07	29.41	48.19	93.05	Pass
38	36 months	3270	2.06	10.13	15.26	29.73	48.34	92.79	Pass
39	36 months	3099	2.03	10.08	15.13	29.58	48.07	92.13	Pass
40	36 months	3099	1.99	9.95	15.13	29.44	48.04	92.19	Pass

8.4.1.3 Data Summary:

- 8.4.1.4 Accuracy Testing Conclusion- Conductivity Sensor remained accurate over the duration of a 3 year shelf life
- 8.4.2 Post Accelerated Aging and Gamma Irradiation Leak Testing
 - 8.4.2.1 Procedure- 9 Conductivity sensors from two different lots were gamma irradiated at 37 kGy. The sensors were then accelerated aged at 60 °C for 14 weeks, simulating 3 years of aging. The sensors were exposed to 100 psi and visually inspected for leaks. Soapy water was placed on the sensor test port and around the sensor cap to easily identify any leaks
 - 8.4.2.2 Calibrated Pressure Gauge: Model: Druck DPI 104 S/N: 2936090 (Cert in Appendix J)
 - 8.4.2.3 Acceptance Criteria: No leaks after exposure to 100 psi for 90 seconds

8.4.2.4 Data Summary:

Lot #	Serial #	Burst/Leak Result
14C80221	1	Pass
14C80221	2	Pass
14C80221	6	Pass
14A78639	6	Pass
14A78639	14	Pass
14A78639	20	Pass
14A78639	35	Pass
14A78639	46	Pass
14A78639	60	Pass

- 8.4.2.5 Leak Testing Conclusion: Conductivity sensors will not leak or burst after 3 years of storage and gamma irradiation
- 8.4.3 Conclusion: Conductivity sensors maintain their accuracy and integrity after 3 years of storage and are therefore suitable for a 3 year shelf life.

8.5 Gamma compatibility

- 8.5.1 Functionality Testing
 - 8.5.1.1 Procedure- 10x CONDS-N-050 (Lot# 19M100661) conductivity sensors were tested for accuracy from 0 to 50 mS following gamma irradiation. The sensors were tested at the exact same test points used to determine the cell constant (K value), 2, 10, 15, 30.1, and 50 mS, before and after gamma irradiation (Certificate in Appendix H). The conductivity readings were compared to confirm that gamma irradiation does not significantly change the sensor performance. NIST traceable conductivity standards were used as a reference. All readings were made using a PendoTECH Conductivity Monitor (CMONT), which is used to determine the cell constant for every PendoTECH Conductivity sensor.
 - 8.5.1.2 Acceptance Criteria: No substantive changes in any individual sensor reading, the group average, or standard deviation, before and after gamma irradiation
 - 8.5.1.3 Data Summary:

Validation Guide for PendoTECH Single Use Conductivity Sensor CONFIDENTIAL- NOT FOR GENERAL DISTRIBUTION

		Co	onductivity S	Sensors Post G	amma Results			
				Conductivity Standard (mS)				
Part number	Lot Number	Serial	K Value	2	10	15	30.1	50
	Lot Number	Number	K value	Pre vs Post Change (mS)				
CONDS-N-050	19M100661	79	0.720	-0.03	-0.07	-0.07	-0.75	-2.21
CONDS-N-050	19M100661	113	0.698	-0.14	0.05	-0.06	-0.65	-2.08
CONDS-N-050	19M100661	65	0.704	-0.03	-0.05	-0.16	-0.93	-2.21
CONDS-N-050	19M100661	101	0.731	-0.19	-0.15	-0.42	-0.67	-1.08
CONDS-N-050	19M100661	91	0.697	-0.06	-0.26	-0.31	-1.07	-2.55
CONDS-N-050	19M100661	87	0.711	-0.04	-0.08	-0.18	-0.67	-1.43
CONDS-N-050	19M100661	96	0.705	-0.11	-0.14	-0.22	-0.84	-1.89
CONDS-N-050	19M100661	80	0.718	-0.14	-0.34	-0.20	-0.71	-1.90
CONDS-N-050	19M100661	69	0.693	-0.15	-0.12	-0.23	-0.95	-2.21
CONDS-N-050	19M100661	59	0.723	-0.08	-0.12	-0.10	-0.71	-2.47
	Group Average*			0.10	0.14	0.19	0.79	2.00
G	roup Standard De	viation		0.06	0.11	0.11	0.15	0.45

*Average of the absolute value of the change for each test point

- 8.5.1.4 Conclusion: Given the variability introduced by different operators, conductivity standards, monitors, etc., the changes in the group average, standard deviation, or any individual sensor reading following gamma irradiation, are not considered to be substantive, thus demonstrating the performance of PendoTECH Single Use Conductivity Sensors post gamma Irradiation
- 8.5.1 Post Gamma Integrity Testing
 - 8.5.1.1 Procedure: The integrity of 10x CONDS-N-050 (Lot# 19M100661) conductivity sensors was challenged following gamma irradiation. All sensors were evaluated with a leak test that consisted of a 90 second pressure decay test at 60 psi as well as a visual inspection for leaks using soapy water.
 - 8.5.1.2 Calibrated Pressure Gauge: Model# DigiSense, Serial# 1912310225, Last Cal: 8/4/2021 (Cert in Appendix K)
 - 8.5.1.3 Acceptance Criteria: Pressure Decay less than 0.03psi/second and no visual detection of leaks
 - 8.5.1.4 Data Summary:

	Conductivity Sensors Post Gamma Leak Results								
Part Number	Lot Number	Serial Number	Initial Pressure (psi)	Final Pressure (psi)	ΔΡ	Pressure Decay (psi/sec)			
CONDS-N-050	19M100661	67	60.05	59.99	-0.06	-0.0007			
CONDS-N-050	19M100661	70	60.05	59.95	-0.10	-0.0011			
CONDS-N-050	19M100661	63	60.00	59.94	-0.06	-0.0007			
CONDS-N-050	19M100661	83	60.02	59.96	-0.06	-0.0007			
CONDS-N-050	19M100661	99	60.06	60.01	-0.05	-0.0006			
CONDS-N-050	19M100661	89	60.01	59.95	-0.06	-0.0007			
CONDS-N-050	19M100661	68	60.01	59.94	-0.07	-0.0008			
CONDS-N-050	19M100661	62	60.03	59.68	-0.35	-0.0039			
CONDS-N-050	19M100661	81	60.04	60.00	-0.04	-0.0004			
CONDS-N-050	19M100661	78	60.04	59.98	-0.06	-0.0007			

8.5.1.5 Conclusion: No leaks were identified in any of the leak testing and all pressure decay tests were within the acceptable limit, thus validating the sensor integrity of PendoTECH Single Use Conductivity Sensors post gamma irradiation.

8.6 X-ray Compatibility

- 8.6.1 Post X-ray Functionality Testing
 - 8.6.1.1 Procedure: 14x Conductivity sensors from 3 different lots (CONDS-N-025 from Lot #'s 0222442687, 0222742463, and 0222589479) were tested for accuracy from 0 to 50 mS. All sensors were X-ray irradiated with a dose >50 kGy (Certificate in Appendix L). The sensors were tested at the exact same test points used to determine the cell constant (K value), 2, 10, 15, 30, and 50 mS, before and after X-ray irradiation. The conductivity readings were compared to confirm that X-ray irradiation does not significantly change the sensor performance. NIST traceable conductivity standards were used as a reference. All readings were made using a PendoTECH Conductivity Monitor (CMONT), which is used to determine the cell constant for every PendoTECH Conductivity sensor.
 - 8.6.1.2 Acceptance Criteria: No substantive changes in any individual sensor reading, the group average, or standard deviation, before and after X-ray irradiation
 - 8.6.1.3 Data Summary:

			Conductiv	ity Sensors Post X	-ray Results			
				Conductivity Standard (mS)				
Part number	Lot Number	Serial Number	K Value	2	10	15	30.1	50
Fait number		Senai Number	K value	Pre vs Post	Pre vs Post	Pre vs Post	Pre vs Post	Pre vs Post
				Change (mS)	Change (mS)	Change (mS)	Change (mS)	Change (mS)
CONDS-N-025	0222442687	6	0.909	-0.04	-0.62	-0.77	0.09	-0.13
CONDS-N-025	0222442687	7	0.931	-0.02	-0.29	-0.95	-0.86	-0.47
CONDS-N-025	0222442687	8	0.938	-0.05	-0.24	-0.99	-0.36	-0.19
CONDS-N-025	0222442687	9	0.925	-0.13	-0.21	-0.87	-0.88	1.58
CONDS-N-025	0222442687	10	0.909	-0.15	-0.32	-1.12	-1.43	0.05
CONDS-N-025	0222742463	12	0.923	-0.07	-0.16	-1.13	0.59	0.16
CONDS-N-025	0222742463	13	0.952	-0.10	-0.23	0.00	-0.37	0.98
CONDS-N-025	0222742463	15	0.951	-0.05	-0.13	-0.45	-0.15	-1.02
CONDS-N-025	0222742463	16	0.904	-0.02	0.15	-0.20	0.26	0.23
CONDS-N-025	0222742463	17	0.954	0.00	-0.14	-0.07	0.44	0.53
CONDS-N-025	0222589479	23	0.966	-0.10	-0.18	-0.57	0.60	1.33
CONDS-N-025	0222589479	24	0.951	-0.06	-0.18	-1.15	0.59	1.02
CONDS-N-025	0222589479	26	0.970	-0.06	-0.12	-0.72	0.57	1.34
CONDS-N-025	0222589479	29	0.956	-0.10	-0.18	-0.77	-0.43	0.46
	Group Average*			0.07	0.23	0.70	0.54	0.68
Grou	o Standard Dev			0.00	0.05	0.22	0.46	0.49

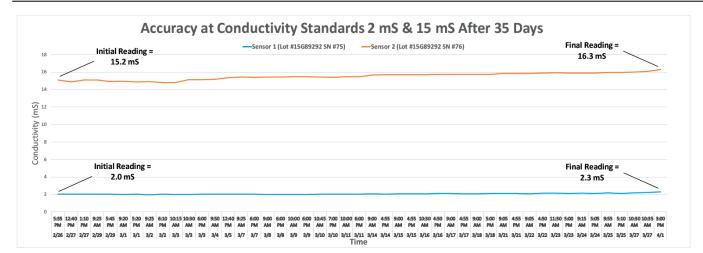
*Average of the absolute value of the change for each test point

- 8.6.1.4 Conclusion: Given the variability introduced by different operators, conductivity standards, monitors, etc., the changes in the group average, standard deviation, or any individual sensor reading following X-ray irradiation, are not considered to be substantive, thus demonstrating the performance of PendoTECH Single Use Conductivity Sensors Post X-ray Irradiation.
- 8.6.2 Post X-ray Integrity Testing
 - 8.6.2.1 Procedure: The integrity of 14x Conductivity sensors from 3 different lots (CONDS-N-025 from Lot #'s 0222442687, 0222742463, and 0222589479) was challenged following exposure to an X-ray Irradiation dose >50kGy. All sensors were evaluated with a leak test that consisted of a 90 second pressure decay test at 60 psi as well as a visual inspection for leaks using soapy water.
 - 8.6.2.2 Calibrated Pressure Gauge: Model# DigiSense, Serial# 1912310225, Last Cal: 8/4/2021 (Cert in Appendix K)
 - 8.6.2.3 Acceptance Criteria: Pressure Decay less than 0.03psi/second and no visual detection of leaks
 - 8.6.2.4 Data Summary:

Validation Guide for PendoTECH Single Use Conductivity Sensor CONFIDENTIAL- NOT FOR GENERAL DISTRIBUTION

Post X-ray Leak Results							
	Lot		Initial Pressure	Final Pressure		Pressure Decay	
Part Number	Number	Serial Number	(psi)	(psi)	ΔΡ	(psi/sec)	
CONDS-N-025	222442687	6	59.99	59.95	-0.040	-0.0004	
CONDS-N-025	222442687	7	60.14	60.08	-0.060	-0.0007	
CONDS-N-025	222442687	8	59.99	59.95	-0.040	-0.0004	
CONDS-N-025	222442687	9	59.95	59.92	-0.030	-0.0003	
CONDS-N-025	222442687	10	60.10	60.04	-0.060	-0.0007	
CONDS-N-025	222742463	12	60.01	59.96	-0.050	-0.0006	
CONDS-N-025	222742463	13	59.98	59.94	-0.040	-0.0004	
CONDS-N-025	222742463	15	60.06	59.99	-0.070	-0.0008	
CONDS-N-025	222742463	16	60.14	60.12	-0.020	-0.0002	
CONDS-N-025	222742463	17	60.17	60.17	0.000	0.0000	
CONDS-N-025	222589479	21	60.00	59.93	-0.070	-0.0008	
CONDS-N-025	222589479	23	60.05	59.99	-0.060	-0.0007	
CONDS-N-025	222589479	24	60.08	60.04	-0.040	-0.0004	
CONDS-N-025	222589479	26	60.10	60.07	-0.030	-0.0003	
CONDS-N-025	222589479	29	60.11	60.06	-0.050	-0.0006	

8.6.2.5 Conclusion: No leaks were identified in any of the leak testing and all pressure decay tests were within the acceptable limit, thus validating the sensor integrity of PendoTECH Single Use Conductivity Sensors post X-ray Irradiation.


8.7 Sensor Use in Continuous Bioprocessing

- 8.7.1 Procedure- PendoTECH carried out a continuous 35 day static experiment on its Single Use Conductivity sensors to evaluate their performance in a continuous bioprocess. Two CONDS-N-025 sensors from Lot #15G89292 were placed in known conductivity standards. One was placed in a 2 mS solution and connected to a CMONT (SN: 3047). The other was placed in a 15 mS solution and connected to a separate CMONT (SN: 3070). Both sensors were closely monitored over the course of 35 days. The sensors' performances were trended throughout the experiment to demonstrate that the sensors maintain their accuracy in long term use. At the end of the 35 days, fresh conductivity sensors were used to measure the conductivity of the standards to measure any drift caused by evaporation during the study.
- 8.7.2 Acceptance Criteria- All sensors remain within accuracy specification. No significant drift.

Conductivity Sensor Accuracy Specification:

From 0.1 to 2 mS/cm +/- 0.1 mS/cm; 2 to 50 mS/cm +/- 5% of reading; 50 to 100 mS/cm typically +/- 5% of reading

8.7.3 Data Summary:

Standard (mS)	CMONT SN: 3047	CMONT SN: 3070
2.00	2.27	2.25
15.00	16.38	16.27

.. 1 1 .: 41. C. 25 4 1 1 1 c.

8.7.4 Conclusion: The readings remained stable and accurate, but a slight drift upwards was observed over the 35 days. However, a fresh conductivity sensor confirmed that the actual conductivity of the solution had increased over the duration of the experiment. This was likely caused by a steady evaporation over the course of the study. With this in mind, the conductivity sensors showed no significant change in reading over 35 days, supporting their use for continuous bioprocessing.

9 APPENDICES

9.1 Appendix A- Assembled Sensor Certificate: Class VI post 40kGy gamma irradiation-Sensor Body and Port Plate O-Ring

RIGHT. FROM THE START.^M

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Tec	hnical Initiation	4/12/2019
Address	174 Nassau Street Suite 256	Tec	hnical Completion	5/29/2019
	Princeton, NJ 08542	Rep	ort Date	6/3/2019
Contact	Dennis Annarelli	Am	ended Report Date	6/17/2019
P.O. Number	2013094	Fina	al GLP Report	19-00538-G1
Test Article	Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation	Ratio	60 cm²/20 mL	
Lot/Batch #	1171477	Vehicles	USP 0.9% Sodium C Injection (NaCl), Cott (CSO), 1 in 20 Ethan (EtOH), and Polyethy 400 (PEG)	onseed Oil of in NaCl
Study	Class VI Test – USP (With 14 Day Subcutaneous Implant)	Extraction Conditions	70 ± 2 °C for 24 ± 2 h	ours

REFERENCES:

The study was conducted based upon the following references:

United States Pharmacopeia 41, National Formulary 36, 2018. <88> Biological Reactivity Tests, In Vivo.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE:

The extraction conditions were performed as stated above. The test article extracts and corresponding blanks were injected systemically and intracutaneously in mice and rabbits, respectively. The injections were in the amounts and routes set forth by USP, including the further dilution of the extracts prepared with PEG. The animals were observed for signs of toxicity and skin reactivity for up to 72 hours post treatment. In addition, the test article was implanted subcutaneously into rats for 14 days and observed macroscopically for signs of hemorrhage, necrosis, discoloration, encapsulation, and infection.

RESULTS AND CONCLUSION:

None of the mice injected with the test article extracts exhibited any signs of toxicity in the Systemic Injection Test. In addition, none of the rabbits injected intracutaneously with the test article extracts exhibited any signs of erythema, or edema in both test and control sites and no signs of clinical toxicity. In both the Systemic and Intracutaneous Tests, the controls were normal through 72 hours. Also, the implant sites exhibited no significant signs of hemorrhage, necrosis, discoloration, encapsulation, or infection compared with the control sites.

The test article meets the requirements of the guidelines for the Biological Test for Plastics, Class VI - 70°C.

AUTHORIZED PERSONNEL:

Colin McFadden, B.S. Quality Assurance

D. Rookita Radhika Devalaraja, Ph.D. Study Director

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

FINAL GLP REPORT: 19-00538-G1 AMENDED

CLASS VI TEST – USP (WITH 14 DAY SUBCUTANEOUS IMPLANT)

Test Article Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

> 21 CFR Part 58 Compliance Good Laboratory Practice for Nonclinical Laboratory Studies

> > Final Report Date 6/3/2019

Amended Final Report Date 6/17/2019

<u>Study Director</u> Radhika Devalaraja, Ph.D.

Sponsor PendoTECH 174 Nassau Street Suite 256 Princeton, NJ 08542

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

TOXIKON Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

STUDY SUMMARY

The USP 0.9% Sodium Chloride for Injection (NaCl), Cottonseed Oil (CSO), 1 in 20 Ethanol in NaCl (EtOH), and Polyethylene Glycol 400 (PEG) extracts of the test article, Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation, following Intracutaneous Injection in rabbits, Systemic Injection in mice, and the test article, following Subcutaneous Implantation in rats, did not produce a biological response.

Based on the criteria of the protocol and the USP guidelines for Class VI Plastics - 70 °C, the test article meets the requirements of the test.

www.toxikon.com

Page 6 of 30 Toxikon Use Only: 000 τοχικοπ Class VI Test - USP (With 14 Day Subcutaneous Implant) Final GLP Report: 19-00538-G1 Amended Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

QUALITY ASSURANCE STATEMENT

The Quality Assurance Unit conducted inspections on the following dates. The findings were reported to the Study Director and to Toxikon's Management.

The final report was reviewed to assure that the report accurately describes the methods and standard operating procedures. The reported results accurately reflect the raw data of the nonclinical study conducted per the protocol.

Phase	Inspection Date	Date Reported to Study Director	Date Reported to Management
EXPLANT	5/29/2019	5/29/2019	5/29/2019
DATA	6/3/2019	6/3/2019	6/3/2019
FINAL REPORT	6/3/2019	6/3/2019	6/3/2019
AMENDED REPORT	6/17/2019	6/17/2019	6/17/2019

n Metalel Colin McFadden, B.S

Quality Assurance

6/17/19 Date

www.toxikon.com

Page 7 of 30 Toxikon Use Only: 000 TOXIKON Test Article Name: Polysulfone Pressure Sensor Body, Pressure Sensing Chip, Port Plate o-Ring Post 40 kGy Gamma Irradiation

GLP COMPLIANCE STATEMENT

This study meets the technical requirements of the protocol.

This study was conducted in compliance with the current U.S. Food and Drug Administration 21 CFR, Part 58 Good Laboratory Practices for Nonclinical Laboratory Studies.

The sections of the regulations not performed by or under the direction of Toxikon Corporation, exempt from this Good Laboratory Practice Statement, included characterization and stability of the test article, 21 CFR, Part 58.105, and its mixture with carriers, 21 CFR, Part 58.113.

SIGNATURES

	Signature Information				
Protocol Number	p19-0161-00b				
Study Director	Radhika Devalaraja, Ph.D.				
Study Supervisor	Catherine Maciaszek, B.S., LAT				
Company	Toxikon Corporation				

VERIFICATION DATES

The study initiation day is the date the protocol is signed by the Study Director.

	Verification Dates				
Test Article Receipt	1/23/2019				
Project Log	2/11/2019				
Study Initiation	3/25/2019				
Study Completion	6/3/2019				

D. Rodhike

Radhika Devalaraja, Ph.D. Study Director

6/17/2019 Date

www.toxikon.com

Page 8 of 30 Toxikon Use Only: 000

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

Gamma Process Run ID 117005A

Product Code	Product Lot Number	Quantity	
40-60 SAMPLES	0020499769	Quantity	UOM
Cust Item ID: CAT, NO. CDRF1TN05		1	CS
40-60 SAMPLES	0021039608		
Cust Item ID: CAT. NO. CDRF4HN05		1	CS
0-60 SAMPLES	0022897176	4	CS
Cust Item ID: CAT. NO. CDRM8HN05		1	CS
0-60 SAMPLES	MGBF620/MGDM180	24	
Cust Item ID: 20277484/00123958DR		1	CS
0-60 SAMPLES	NA		
Cust Item ID: PENDOTECH POLYSULFONE SENSORS	17555)	1	CS

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019	10:07:00 pm	Approx. Downtime (hours);	3.82
Processing Run End Date/Time:	21-Jan-2019	04:04:00 am		
Ainimum Specified Dose (kGy):	40.0		Minimum Delivered Dose (kGy):	42.1
faximum Specified Dose (kGy):	60.0		Maximum Delivered Dose (kGy):	50.8
Product meets Custor	mer specificatio	ons; zero nonci	onformities occurred during this irradiation run.	
		Signature	Manifest	
Reviewed and E-Signed By Francine Maranda (QS	S& RC Ana	(vet)	Signed On 1/21/2019 at 8:4 UTC / GMT Offset (hh.mm) -5:00	
Document Content Revision		134		
		_		
Processing Location: STERIS I35 Whitney Street Northborough, MA 01532 Phone: 508-393-9323	EN/ISO 1348 ANSI/AAMI/S	nd provide service 5, and in elignmen 50 11135. For iten	ance with applicable state and federal regulations (FDA, NRC s under a quality system which meets the requirements of FDA with the applicable standard, EN ANSI/AAM/ISO 11137 or t s processed with gamma imadiation, STERIS cartifies that the as within the precision and accuracy of the dosimetry system	A QSR. N
ax: 844-698-9776				
00034/01354/01369 Last Rev in Rel. 3.6.5.1			Release Date 05-Jun-2017	Page

ú

STERIS

for

					Da	te Prepared: 1	Date Propared: 1/21/2019 8:47:34AM
radiate	Processing Location: Irradiator / Method:		Northborough 126, Nordion Cobalt-60 Irradiator #126, ON-STD	ator #126, ON	STD		
Carrier	Sed	Coordinate	te Barcode ID	Insert	Instrument Dose (kGv)	Dose (kGy)	Final Dose (KGV)
Dose	Measur	Final Dose Measurements					
-	-	0C1	0BR600288204	TH0049	0484	28.7	42.1
			08R600257802	TH0048	0481	13.4	
-	2	TAS	08R600288439	TH0049	0484	34.4	50.5
			0BR600257878	TH0048	0481	16.1	
۰	e	TES	0BR600288499	TH0049	0484	34.7	50.8
			0BR600257886	TH0048	0481	16.1	
		Minimu	Minimum Dose for Record (kGy):	4	42.1		
		Maximu	Maximum Dose for Record (kGy):	5	50.8		
	1						
				538	Signature Manifest	fanifest	
	-	Ś	Prepared By: Baez, Hector (Material Handler)	Handler)			Signed On 1/21/2019 at 6:23 AM UTC / GMT Offset (Minimu): -5:00
		Ś	Approved By: Francine Maranda (QS & RC Analyst)	& RC Analy	(st)		Signed On 1/21/2019 at 8:47 AM UTC/GMT Offset (hhrmen): -5:00
	-						

9.2 Appendix B- Assembled Sensor Certificate: USP 661 post gamma irradiation

тохікоп

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH		I Initiation	11/18/2015
Address	174 Nassau Street Ste. 256	rechnica	I Completion	11/20/2015
0	Princeton, New Jersey 08542	Damant D	- 4 -	44/04/0045
Contact P.O. Number	Dennis Annarelli 2009258	Report D Final Nor	ate 1-GLP Report	11/24/2015 15-04024-N1
	PendoTECH Single Use			
Test Article	Conductivity Sensor	Ratio	120 cm²/20 mL	
	Post Gamma Irradiation			
Lot/Batch #	15B89295	Vehicle	Purified Water	
Study	Physicochemical Test for Plastics – USP	Extraction Conditions	$70 \pm 2^{\circ}C$ for 24	± 2 hours
Comments	Cable not included in extraction.			

REFERENCES: The study was conducted based upon the following references: United States Pharmacopeia 38, National Formulary 33, 2015. Monograph <661> Containers, Physicochemical Tests–Plastics.

ISO/IEC 17025, 2005, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article was extracted in purified water after rinsing in purified water. The following tests were conducted in order to determine physical and chemical properties of the test article's extracts: Nonvolatile Residue, Residue on Ignition, Heavy Metals, and Buffering Capacity.

RESULTS:

TEST	ACCEPTABLE LEVEL	TEST RESULT
Nonvolatile Residue	≤ 15 mg	3.5 mg, Meets Criteria
Residue on Ignition*	≤ 5 mg	Not Applicable
Heavy Metals	≤ 1 ppm	> 1 ppm, Does not meet Criteria
Buffering Capacity	≤ 10 mL	0.76 mL, Meets Criteria

*The Residue on Ignition test is only performed if the nonvolatile residue is 5 mg or above.

CONCLUSION: The test article meets criteria of the USP Physicochemical Test for Plastics for nonvolatile residue and Buffering Capacity based upon the methods employed. It does not meet the criteria for Heavy Metals of the USP Physicochemical Test for Plastics based on the method employed.

AUTHORIZED PERSONNEL:

Lakshmi Chandrasekaran, M.S. Quality Assurance

amar Amtul Qamar, M.S. Study Director

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Gamma Process Run ID 179365C

Isomedix Services

Product Code	Product Lot Number	Quantity	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS
GROUP 82	140080 / 85174-0000	2	CS
GROUP 82	622014-0602 / 84931-ENDO	1	CS
GROUP 82	B110032-I / 85048-0000	1	CS
GROUP 82	B110522-I / 86408-0000	1	CS

Processing Run Start Date/Time:	01-Nov-2015	01:31:29 am	A	pprox. Downtime (hours):	0.00	
Processing Run End Date/Time:	01-Nov-2015	03:25:16 am				
Minimum Specified Dose (kGy):	27.5		Minimum Deli	ivered Dose (kGy):	30.1	
Maximum Specified Dose (kGy):	45.0		Maximum Del	ivered Dose (kGy):	37.7	
Product meets Custor	mer specificat	ions; zero nonc	onformities occurred	during this irradiation run.		
		Oirreture	Mara:64			_
		Signature	Manifest			
Reviewed and E-Signed By				Signed On 11/2/2015 at 1 UTC / GMT Offset (hh:mm): -5		
Tracy Wild (QS/RC Te				oror own onset (nithingo		
Document Content Revision	1: 1					
Processing Location:	Operating f	cliffies are in comm	liance with applicable sta	te and federal regulations (FDA, N	RC EDA	-
Processing Location: STERIS Isomedix Services	and OSHA)	and provide servic	es under a quality system	which meets the requirements of	FDA QSR,	
23 Elizabeth Drive				SI/AAMI/ISO 11137:2006. STERI: ed doses within the precision and a		
Chester, NY 10918		etry system used.				
Phone: 845-469-4087 Fax: 845-469-7512						
PROC-00034/01354/01369 Last Rev In Rel. 3.6.2.1			Release Date:	02-Apr-2014	Page 1 o	of 1

	e	Chester						
Irradiator / Method:		239, Nordion Cobalt-50 Irradiator #239, Cont Batch	rradiator #239, Co	nt Batch				
Carrier Sec	Coordinate	e Batch - Cal Dt	Spectro S/N	Micrometer S/N	ABS	Thick (mm)	Final Dose (kGv)	Comment
	8		5A3O364003	MX 700989	0.7050	2.748	30.7	
2	0C3	NR (09/15/2015)	5A3O364003	MX 700989	0.7742	3.049	30.1	
0	0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8206	3.228	30.2	
4	101	NR (09/15/2015)	5A3O364003	MX 700989	0.7697	2.877	33.0	
9	1CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8630	3.249	32.6	
9	TBAEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8840	3.236	34.3	
2	TBEEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7782	2.842	34.5	
-	0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7542	2.962	30.3	
8	TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.8315	2.894	37.7	
e	TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.8871	3.124	36.9	
Minimum D	Minimum Dose for Record (kGy):		30.1					
Maximum C	Maximum Dose for Record (kGy):		37.7					
Last Dosimet	r Absolbance Me	Last Dosimeter Absorbance Measurement Date/Time: 11/12	11/12015 4:21:38 AM					
				Signature Manifest	ifest			
	60	Prepared By: Zephoni Rose (Ma	(Material Handler)	_		Signed On 11/1/2015 at 4:22 AM UTC / GMT Offeet (hit:mm): -5:00	15 at 4:22 AM m): -5:00	
	8	Approved By: Tracy Wild (QS/RC Technician) Document Content Revision: 1	C Technician) vision: 1			Signed On 11/2/2015 at 10:47 AM UTC / GMT Offset (htrmm): -5:00	15 at 10:47 AM m): -5:00	

STERIS Isomedix Services Dosimetry Record

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Gamma Process Run ID 179655E

Product Code	Product Lot Number	Quantity	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS
GROUP 82	B104620-I / 86635-0000	50	CS
GROUP 85	HM00170-I / 86608-0000	1	CS

Processing Run Start Date/Time:	08-Nov-2015	07:22:48 am	A	pprox. Downtime (hours):	0.09	
Processing Run End Date/Time:	08-Nov-2015	09:28:01 am				
Minimum Specified Dose (kGy):	27.5		Minimum Deli	vered Dose (kGy):	30.3	
Maximum Specified Dose (kGy):	45.0		Maximum Del	ivered Dose (kGy):	39.8	
Product meets Custo	mer specificatio	ons; zero nonco	nformities occurred	during this irradiation run.		
		Signature	Manifest			
Reviewed and E-Signed By				Signed On 11/10/2015 at	3:45 PM	
Tracy Wild (QS/RC Te				UTC / GMT Offset (hh:mm): -5	:00	
Document Content Revision	1: 1					
						,
Processing Location: STERIS Isomedix Services	and OSHA) a	and provide services	under a quality system	te and federal regulations (FDA, N which meets the requirements of	FDA QSR,	
23 Elizabeth Drive				SI/AAMI/ISO 11137:2006. STERI: d doses within the precision and a		
Chester, NY 10918		etry system used.			,	
Phone: 845-469-4087 Fax: 845-469-7512						
L PROC-00034/01354/01369 Last Rev In Rel. 3.6.2.1			Release Date:	02-Apr-2014	Page	1 of 1

STERIS

Isomedix Services

			Prepared	for ADVANCED S Date Prepa	Prepared for ADVANCED SCIENTIFICS INC – Process Run ID 179655E Date Prepared: 11/9/2015 12:19:36PM	cess Run ID 36PM) 179655E		
Proces	Processing Location:		Chester						
Irradia	Irradiator / Method:		239, Nordion Cobalt-60 Irradiator #239, Cont Batch	rradiator #239, Co	nt Batch				
								Final	
Carrier	Seq	Coordinate	ate Batch - Cal Dt	Spectro S/N	Micrometer S/N	ABS	Thick (mm)	Dose (kGy)	Comment
-	-	8	NR (09/15/2015)	5A3O364003	MX 700989	0.7962	3.125	30.3	
-	2	TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.8975	3.108	38.1	
-	e	TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.7923	2.818	36.2	
2	-	TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.7922	2.925	33.8	
2	2	TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.8764	3.213	34.2	
e	-	0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.8139	3.171	30.7	
e	2	1A5	NR (09/15/2015)	5A3O364003	MX 700989	0.8954	3.032	39.8	
e	e	1E5	NR (09/15/2015)	5A3O364003	MX 700989	0.9176	3.131	39.2	
2	-	0CEOB	NR (09/15/2015)	5A3O364003	MX 700989	0.7704	2.963	31.4	
2	2	1A5	NR (09/15/2015)	5A3O364003	MX 700989	0.8998	3.084	38.9	
9	e	1E5	NR (09/15/2015)	5A3O364003	MX 700989	0.9223	3.137	39.5	
9	-	TBA5	NR (09/15/2015)	5A3O364003	MX 700989	0.8509	3.033	38.1	
9	2	TBE5	NR (09/15/2015)	5A3O364003	MX 700989	0.8184	2.863	37.4	
Min	imum Do	Minimum Dose for Record (kGy):	ord (kGy):	30.3					
Max	dimum De	Maximum Dose for Record (kGy):		39.8					
las	t Dosimeter	r Absorbance M	Last Dosimelier Absorbance Measurement Date/Time: 11/92	11/82015 11:27:16 AM					
			ment Legend:	OUT = Calc Dose Out o	OUT = Calc Dose Out of Limits, PID = Pre-irradiated Dosimeter; GRP = Dosimeter Group	d Dosimeter; G	3RP = Dosimeter Group		
C-00036/	01350 Last	Rev DMA 1.0.	PROC-00036/01350 Last Rev DMA 1.0.2.1 & RT 3.6.2.1	R	Release Date: 10-Aug-2015				Page 1 of 2

STERIS Isomedix Services Dosimetry Record

9.3 Appendix C: Assembled Sensor Certificate: ISO 10993-5 post gamma irradiation

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical	Initiation	8/18/2015
Address	174 Nassau Street Ste. 256	Technical	Completion	8/21/2015
Contact P.O. Number	Princeton, New Jersey 08542 Dennis Annarelli 2008960	Report Da Final GLP		9/1/2015 15-02864-G1
Test Article	conductivity sensor	Ratio	3 cm ² /mL	
Lot/Batch #	See Attachment A	Vehicle	Serum–Sup (complete) M Essential Me	
Study	L929 Neutral Red Uptake Test (1 Concentration) – ISO	Extraction	24 ± 2 hours	at 37 ± 1 °C
Comments	Per Sponsor request, the test article was e	extracted intact and wires	were excluded	from testing

REFERENCES: The study was based upon the following references: ISO 10993–5, 2009, Biological Evaluation of Medical Devices – Part 5: Tests for *In Vitro* Cytotoxicity. ISO 10993–12, 2012, Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials.

ISO/IEC 17025, 2005, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The biological reactivity of a mammalian cell monolayer, L929 mouse fibroblast, in response to the test article extract was determined. The test article extract was prepared as stated above. Positive control (Natural Rubber) and negative control (Negative Control Plastic) articles and an untreated control were prepared to verify the proper functioning of the test system. The test article and control article extracts were used to replace the maintenance medium of the cell culture. The test article extract was tested at the 100% (neat) concentration. All cultures were incubated in, at least, 6 replicates for 24 to 26 hours, at 37 ± 1 °C, in a humidified atmosphere containing $5 \pm 1\%$ carbon dioxide (CO₂). The viability of cells following the exposure to the extracts was measured via their capacity to uptake a vital dye, Neutral Red. This dye was added to the cells to be actively incorporated in viable cells. The number of viable cells correlates to the color intensity determined by photometric measurements at 540 nm after extraction.

EVALUATION CRITERIA: The viability of cells exposed to the negative control article and positive control article extracts need to be greater and less than 70% of the untreated control, respectively, to confirm the validity of the assay. The test article meets the requirements of the test if the viability % is greater than or equal to 70% of the untreated control.

RESULTS:

	Untreated	Negative	Positive Control	Test Article
	Control	Control	Positive Control	100% (neat)
Average OD	0.532	0.571	0.214	0.541
Viability %	100%	107%	40%	102%

CONCLUSION: The test article meets the requirements of the test and is not considered to have a cytotoxic effect.

AUTHORIZED PERSONNEL:

Elizabeth Hogan, B.S. Quality Assurance

Sruthi Sundaram, Ph.D. Study Director

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

STERIS 🖉

Isomedix Services

Certificate Of Processing

Prepared for ADVANCED SCIENTIFICS INC

Gamma Process Run ID 75899A

Product Code	Product Lot Number	Quantity	UOM
GROUP 69	SAMPLE JASON / SAMPLE JASON-0000	1	CS

Processing Run Start Date/Time:	01-Aug-2015	09:52:00 pm	А	pprox. Downtime (hours):	0.15	
Processing Run End Date/Time:	01-Aug-2015	11:27:00 pm				
Minimum Specified Dose (kGy):	27.5		Minimum Del	ivered Dose (kGy):	34.8	
Maximum Specified Dose (kGy):	45.0		Maximum De	livered Dose (kGy):	37.8	
Product meets Custor	mer specificati	ons; zero nonc	onformities occurred	l during this irradiation run.		
		Signature	Manifest			
Reviewed and E-Signed By				Signed On 8/3/2015 at 7:5	51 AM	
Maria H Greco (QS/R)	C Technicia	n)		UTC / GMT Offset (hh:mm): -4:	00	
Document Content Revision	n: 1					
Processing Location: STERIS Isomedix Services 9 Apollo Drive Whippany, NJ 07981 Phone: 973-887-2754 Fax: 973-887-6591	and OSHA) EN/ISO 134 certifies that	and provide servic 85:2003/2012, and	es under a quality system I in alignment with EN AN	te and federal regulations (FDA, Ni which meets the requirements of F SI/AAMI/ISO 11137:2006. STERIS ed doses within the precision and a	FDA QSR, Isomedix	
PROC-00034/01354/01369 Last Rev In Rel. 3.6.2.1			Release Date:	02-Apr-2014	Pag	ge 1 of 1

Processing Location: Whippany Irradiabr / Method: 131, Nordion Cobalt-60 Irradiator #131 Irradiabr / Method: 131, Nordion Cobalt-60 Irradiator #131 1 1 2000000000000000000000000000000000000	Whippany Mippany Mippany Mitradiator #131, ON-STD Mitradiator #13	rad lator #131, ON-S Spectro S/N 4324039 4324039 4324039 4324039 4324039 34.8 37.8	STD Mic.rometer S/N MX 700987 MX 700987 MX 700987 MX 700987	ABS 1 0.8148 0.7651 0.9126 0.8675 0.8776	Thick (mm) 2.856 2.602 3.060 2.926 2.949 2.949	Final Dose (kGy) 34.8 37.8 37.6 37.6	Comment
tier Seq Coordinate 1 2 245 1 2 245 1 2 245 1 3 2E5 1 4 TBA5 1 5 TBE5 Minimum Dose for Record (kG Maximum Dose for Record (kG Last Dosimeter Absorbance Measumm	Batch - Cal Dt NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) Sy): 3 3y): 3 Gy): 3 Gy): 8/2015	Spectro S/N 4324039 4324039 4324039 4324039 4324039 4324039 34.8 37.8	Micrometer S/N MX 700987 MX 700987 MX 700987 MX 700987	2 2 2 2 48	Thick (mm) 2.856 3.060 2.926 2.949 2.949		Commert
1 1 2C5 1 2 2A5 1 3 2E5 1 4 TBA5 1 5 TBE5 Minimum Dose for Record (kG Maximum Dose for Record (kG	NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) 3): 3 3 Gy): 3 3 Gy): 32 3 3 3	4324039 4324039 4324039 4324039 4324039 34.8 37.8 37.8	MX 700987 MX 700987 MX 700987 MX 700987	3 3 5 5 1 48	2.856 2.602 2.926 2.949	34.8 36.8 37.4 37.6	
1 2 245 1 3 2E5 1 4 TBA5 1 5 TBE5 Minimum Dose for Record (kG Maximum Dose for Record (kG Last Dosimeter Absorbance Measurem	NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) 3y): 3 3y): 3 Gy): 3 Gy): 32 0 hort Date/Time: 8/2/201	4324039 4324039 4324039 4324039 34.8 37.8 37.8	MX 700987 MX 700987 MX 700987 MX 700987	0.7651 0.9126 0.8675 0.8776	2.602 3.060 2.926 2.949	36.8 37.4 37.6	
1 3 2E5 1 4 TBA5 1 5 TBE5 Minimum Dose for Record (kG Maximum Dose for Record (kG Last Dosimeter Absorbance Measumm	NM (05/27/2015) NM (05/27/2015) NM (05/27/2015) 3y): 3 3 Gy): 3 Gy): 82/201	4324039 4324039 4324039 34.8 37.8 37.8	MX 700987 MX 700987 MX 700987	0.9126 0.8675 0.8776	3.060 2.926 2.949	37.8 37.6 37.6	
1 4 TBA5 1 5 TBE5 1 Minimum Dose for Record (kG Maximum Dose for Record (kG Last Dosimmer Absorbance Measumm	NM (05/27/2015) NM (05/27/2015) 3y): 3 3 Gy): 3 Gy): 8/2/201	4324039 4324039 34.8 37.8 15 12 33.08 A M	MX 700987 MX 700987	0.8776	2.926 2.949	37.6	
1 5 TBE5 Minimum Dose for Record (kG Maximum Dose for Record (kC Last Dosimeter Absorbance Measumern	NM (05/27/2015) 3y): 3 Gy): 3 Gy): 33 ment Date/Time: 8/2/201	4324039 34.8 37.8 15 12 33 08 A.M	MX 700987	0.8776	2.949	37.6	
Minimum Dose for Record (kG Maximum Dose for Record (kG Last Dosimeter Absorbance Measumer	3y): 3 Gy): 3 ment Date/Time: 8/2/201	34.8 37.8 15 12:33.08 A.M					
Maximum Dose for Record (kG Last Dosimeter Absorbance Measurem	Gy): 3 ment Date/Time: 8/2/201	37.8 15 12 33.08 A.M					
Last Dosimeter Absorbance Measurem	ment Date/Time: 8/2/201	15 12:33.08 A.M					
			Signature Manif.	tee		[
			Signature Manifest	est	0.01 to 3100,00 to 10.00		
Ro	Prepared by: Ronald Slack (Supervisor I)	pervisor ()			Signed On 8/2/2015 at 12:33 AM UTC / GMT Offset (nhrmm): -4:00	3 AM	
App Mai	Approved By: Maria H Greco (QS/RC Technician) Document Content Revision: 1	S/RC Technician	(e		Signed On 8/3/2015 at 7:49 AM UTC/GMTOffeet (httmm): -4:00	W	

9.4 Appendix D: Assembled Sensor Certificate: Particulates

TEST RESULT CERTIFICATE

Sponsor	PendoTech	Technic	al Initiation	03/05/2019
Address	174 Nassau Street, Ste. 256	Technic	al Completion	03/06/2019
Contact P.O. Number	Princeton, NJ, 08542, USA Dennis Annarelli 2013020	Report I Final No	Date on-GLP Report	03/26/2019 19-00167-N1
Test Article	PendoTECH Single Use Conductivity Sensors	Ratio	Fluid Path	
Lot/Batch #	18G75422, 18B68526, 18E72698, 18D71380, 18AG5416	Vehicle	Purified Water	
Study	Particulate Matter by Light Obscuration of Extract from a Solid Test Article	Extraction Conditions	37 ± 2 °C for 24 ±	2 hours
Comments	None			

REFERENCES: The study was conducted based upon the following references: United States Pharmacopeia 41, National Formulary 36, 2018. <788> Particulate Matter In Injections. Particle Measuring System. Operations Manual for "SLS-FAMILY Syringe Liquid Sampler" publication no. 1000014034, Rev G. Particle Measuring System. Operations Manual for "LiQuilaz® -E20 Particle Counter" publication no. M10179, Rev G. Sponsor specifications.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article was extracted by filling the fluid path of all the devices (connected in series with tubing) with purified water at 37 ± 2 °C for 24 ± 2 hours. A control solution of purified water in the tubing only was also collected for analysis. Finally, a control solution of purified water was also collected . The resulting extracts were analyzed using the Particle Measuring System, Automated Parenteral Syringe Sampler (APSS)-2000. Particles were analyzed using channel settings of 10 and 25 μ m. The differential count results were recorded directly from the instrument.

CALCULATIONS: Calculation of number of particles (of each size) per device :

$$Particles per unit = \frac{Ta * Pa - Tb * P_{c}}{N_{dev}}$$

Where:

 $\begin{array}{l} Ta = Total \mbox{ Volume of Test Articles + Tubing = 71 mL} \\ Tb = Amount of \mbox{ volume corresponding to Tubing = 60 mL} \\ Pa = Number \mbox{ of particles / mL obtained in the extraction of Test Articles + Tubing} \\ Pc = Number \mbox{ of particles / mL obtained in the tubing control experiment} \\ N_{dev} = Number \mbox{ of devices = 10} \end{array}$

> 15 Wiggins Avenue, Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

тохікоп

Particulate Matter by Light Obscuration of Extract from a Solid Test Article Final Non-GLP Report: 19-00167-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors

RESULTS: The results are presented in Table 1 and Table 2.

Sample ID	Denligete	(Particle	s per mL)
Sample ID	Replicate	≥ 10 µm	≥ 25 µm
	1	Discarde	ed Sample
	2	0.2000	0.2000
Control	3	0.6000	0.0000
(Purified Water)	4	0.2000	0.0000
	5	0.2000	0.4000
	Average	0.3000	0.1500
	1	Discarded Samp	
	2	5.4000	0.2000
	3	8.0000	0.4000
Tubing Control	4	6.0000	0.8000
	5	6.4000	0.2000
	Average	6.4500	0.4000
	1	Discarde	d Sample
	2	5.6000	0.8000
Test Article	3	6.2000	1.0000
+	4	8.4000	1.2000
Tubing	5	6.6000	0.2000
	Average	6.7000	0.8000

Each replicate was a 5 mL aliquot of the sample.

TABLE 2 Particles per unit of device

Sample ID	Replicate	(Particles per unit		
Sample ID	Replicate	<mark>≥ 10 µm</mark>	≥ 25 µm	
	1	Discarde	d Sample	
Test Article	2	7.3600	4.4800	
(corrected for	3	0.0000	4.7000	
the control)	4	23.6400	3.7200	
	5	8.4600	0.2200	
	Average	8.8700	3.2800	

CONCLUSION: The test article contained the amounts of each particle size as presented in Table 2, when tested based on the methods employed.

AUTHORIZED PERSONNEL: Vaners

Vanessa M. Dubay, B.S. Quality Assurance

14/(105

Edvin Klosi, Ph.D. Study Director

was a 5 mL aliquot of the sa

Page 40 of 62

9.5 Appendix E: Assembled Sensor Certificate: Bioburden

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	1/21/2019
Address	174 Nassau Street	Technical Completion	1/28/2019
	Ste.256		
	Princeton, New Jersey 08542		
Contact	Dennis Annarelli	Report Date	2/1/2019
P.O. Number	2013020	Final Non-GLP Report	19-00165-N2
Test Article	PendoTECH Single Use Conductivity Sens	sors	
		SOIS	
Lot/Batch #	18H78452, 18K81350, 17M65167		
Study	Aerobic, Anaerobic, Heat Shock and Yeas	t & Mold Bioburden by Membrane Filtration	on – AAMI
Comments	One (1) unit from each of the three (3) lots Project Number 19-00165-N1 for bioburde	supplied by sponsor was tested. Refer to	Toxikon

REFERENCES: The study was conducted based upon the following references: ANSI/AAMI/ISO 11137–1, 2006/(R) 2010 & A1: 2013 (Consolidated Text) Sterilization of Health Care Products – Radiation – Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. ANSI/AAMI/ISO 11737–1:2018 Sterilization of Health Care Products – Microbiological Methods – Part 1: Determination of the Population of Microorganisms on Product.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The Sponsor submitted three (3) lots, one (1) unit from each lot was tested for total bioburden. Each test article was individually placed in a sterile bag and the fluid pathway was flushed with 100 mL of sterile Fluid D. The bag was shaken for 30 seconds. A volume of 96 mL of Fluid D was recovered and four (4) equal aliquots were made. One (1) aliquot was heat shocked at 80 °C for 15 minutes, then allowed to cool down. Following membrane filtration (4 × 24 mL) and wash with 10 mL of Phosphate Buffered Saline (PBS), the filters (one per plate) were aseptically placed onto Trypticase Soy Agar (TSA) plates and incubated aerobically and anaerobically at 30–35 °C for 4 days and onto Sabouraud Dextrose Agar (SDA) plates and incubated aerobically at 20–25 °C for 7 days. Samples of Fluid D and PBS, used as negative controls, were similarly filtered, plated and incubated. Colony Forming Units (CFU) were determined for each filter. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

RESULTS:

30213.	Bi	TABLE 1: oburden Results		
		CFU/Pla	ate	
Test Article	TSA (Aerobic)	TSA (Anaerobic)	TSA (Heat Shock)	SDA (Yeast & Mold)
18H78452	NOC	NOC	1 Cream CI, FL	NOC
18K81350	1 Yellow CI, RA 1 Yellow IR, FL	NOC	NOC	NOC
17M65167	1 Cream CI, FL	NOC	NOC	NOC
Average CFU/Plate	1.0	0	0.3	0
CFU/Device	4	<1	1	< 1

CFU = Colony Forming Units

NOC = No Observable Colonies = <1 = 0 for calculations CI = Circular, FL = Flat, IR = Irregular, RA = Raised

Average CFU/Plate = Sum of CFU/plates ÷ Number of Plates

CFU/Device = <u>Average CFU/Plate × Fluid D used (100 mL)</u> Volume Filtered (24 mL)

Corrected CFU/Device = Total CFU/Device × Recovery Factor = 5 × 2.5 = 13

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	1/21/2019		
Address	174 Nassau Street	Technical Completion	1/25/2019		
	Ste.256				
	Princeton, New Jersey 08542				
Contact	Dennis Annarelli	Report Date	2/1/2019		
P.O. Number	2013020	Final Non-GLP Report	19-00165-N1		
Test Article	PendoTECH Single Use Conductivity Sensors	1			
Lot/Batch #	18H78452, 18K81350, 17M65167				
Study	Bioburden Validation – Spore Inoculation – AAMI				
	One (1) unit from each of the three (3) lots supplied by sponsor was tested.				

REFERENCES: The study was conducted based upon the following references: ANSI/AAMI/ISO 11137–1, 2006/(R) 2010 & A1: 2013 (Consolidated Text) Sterilization of Health Care Products – Radiation – Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. ANSI/AAMI/ISO 11737–1:2018 Sterilization of Health Care Products – Microbiological Methods – Part 1: Determination of the Population of Microorganisms on Product.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The Sponsor submitted three (3) units for bioburden validation by spore inoculation. Each test article was individually placed in a sterile bag and inoculated with 0.1 mL of *Bacillus atrophaeus* (*B. atrophaeus*) and allowed to dry for thirty (30) minutes. A volume of 100 mL of Fluid D was used to flush each test article. The bag was shaken for 30 seconds. The recovered extract (96 mL) was then membrane filtered. Following membrane filtration (2 × 48 mL) and wash with 10 mL of Phosphate Buffered Saline (PBS), the filters were aseptically placed onto Trypticase Soy Agar (TSA) plates and incubated aerobically at 30–35 °C for 4 days. For the positive control, 0.1 mL of *B. atrophaeus* was added to a sterile bag and allowed to dry for thirty (30) minutes. A volume of 100 mL of Fluid D was added, bag was shaken for 30 seconds, membrane filtered (2 × 48 mL), washed with 10 mL of PBS, and aseptically placed onto TSA plates and incubated aerobically at 30–35 °C for 4 days. Somples of Fluid D and PBS, used as negative controls, were similarly filtered, plated and incubated. The spore suspension concentration was verified by plate count utilizing membrane filtration method with 0.1 mL per plate, in duplicate, and incubated aerobically at 30–35 °C for 4 days.

RESULTS:

		ulation Verifi ganism: <i>B. a</i>		
	CFU/Plate/0.1 mL		Average	Challenge
Concentration	1	2	CFU/Plate	Suspension (CFU/0.1 mL)
Neat	75	79	77.0	77.0
	0.511	0 I E		

TABLE 1:

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate ÷ Number of Plates

Challenge Suspension (CFU/0.1 mL) = Average CFU/Plate = Population Inoculated

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

τοχικοη

Bioburden Validation - Spore Inoculation - AAMI Final Non-GLP Report: 19-00165-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors

TABLE 2: **Bioburden Validation Test Article Results**

CFU/Plate								1. S. 22.	
ТА	1	TA	2	ТА	4 3	Average CFU/Plate	CFU/Device	evice % Recovery	Recovery Factor
16	13	5	11	22	23	15.0	31	40%	2.5

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate ÷ Number of Plates

CFU/Device (Population Recovered) = Average CFU/Plate × (Volume of Fluid D used + Volume Filtered)

% Recovery = (Population Recovered ÷ Population Inoculated) × 100

Recovery Factor = 100% ÷ Percent Recovery

TABLE 3:
Bioburden Validation
Positive Control Results

CFU	Plate	Average CFU/Plate	CFU/Device	% Recovery	Recovery Factor
32	36	34.0	71	92%	1.1

CFU = Colony Forming Units

Average CFU/Plate = Sum of CFU/Plate + Number of Plates

CFU/Device (Population Recovered) = Average CFU/Plate × (Volume of Fluid D used ÷ Volume Filtered)

% Recovery = (Population Recovered ÷ Population Inoculated) × 100

Recovery Factor = 100% ÷ Percent Recovery

TABL Negative Cor	
Fluid D	PBS
NOC	NOC

NOC = No Observable Colonies

CONCLUSION: For the Test Article Results, the average CFU/Plate was 15.0 and the CFU/Device was 31. Using the spore inoculation method, the percent recovery was 40% and the recovery factor was 2.5. For the Positive Control Results, the average CFU/Plate was 34.0 and the CFU/Device was 71. Using the spore inoculation method, the percent recovery was 92% and the recovery factor was 1.1. The Fluid D and PBS plates (negative controls) showed no growth.

AUTHORIZED PERSONNEL:

<u>Ashley J. Chateauneuf</u> Ashley G. Chateauneuf. B.S. Quality Assurance

Aparajita Mulchenjee Aparajita Mukherjee, M.S.

Study Director

www.toxikon.com

Page 2 of 2

9.6 Appendix F: Assembled Sensor Certificate: Endotoxin

TOXIKON RIGHT. FROM THE START.[®]

TEST RESULT CERTIFICATE

Sponsor Address	PendoTECH 174 Nassau St. Suite 256 Princeton, NJ 08542		Technical Initiation Technical Completion	6/4/2019 6/4/2019			
Contact P.O. Number	Dennis Annarelli 2013567		Report Date Final Non-GLP Report	6/10/2019 19-01946-N1			
Test Article	PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation	Ratio	1 Unit/120.0 mL				
Lot/Batch #	Not Supplied by Sponsor	Vehicle	USP Sterile Water for Inje	ction (SWFI)			
Sterility	Sterile Storage Condition Room Temperature						
Study	Endotoxins Test Validation (I & E) - USP						
	Pouches containing devices tested included the following information: Test Article 1: Lot 17M6516 Test Article 2: Lot 17C51224 Test Article 3: Lot 18G75420						
Comments	Sponsor Request: Suspend device by cable thus immersing sensors' clear polysulfone body in liquid to get barbed "T" section fully immersed, including device's fluid path. Avoid immersing any of the white cable/wire that is attached to the device.						
	The pH of test article 1 (Lot 17M6516) wa (Lot 17C51224) was 8.16 and was adjust and did not need to be adjusted.	as 8.18 and wa ted to 7.38. Th	as adjusted to 7.60. The pH of test article 3 (18G75	of test article 2 420) was 7.29			

REFERENCES: The study was conducted based upon the following references: USP 42, NF 37, 2019. <85> Bacterial Endotoxins Test. ISO 10993-12, 2012 Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials. ANSI/AAMI ST72:2011 Bacterial Endotoxins - Test Methods, Routine Monitoring, and Alternatives to Batch Testing.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test articles (3 units) were identified by information on the product packaging provided by the Sponsor. The barbed "T" section and fluid path of each test article was individually immersed in 120.0 mL of SWFI heated to 37 ± 1 °C and extracted at room temperature for 60 ± 2 minutes. Each extract was assayed in duplicate at the neat concentration. A standard curve of endotoxin was prepared in duplicate with concentrations of 0.005, 0.05, 0.5, and 5 EU/mL. A positive product control (PPC) for each dilution was prepared containing 0.09 mL of the extract and 0.01 mL of the 5 EU/mL endotoxin standard to give a final concentration of 0.5 EU/mL. Water for Bacterial Endotoxins Test (BET) and SWFI served as the negative controls. The microtiter plate was pre–incubated in the plate reader at 37 ± 1 °C for ≥ 10 minutes. After incubation, Lysate (0.1 mL) was added to each well and the absorbance of each well at 405 nm was read every 150 seconds for a total of 40 data points or until the concentration reached 0.2 absorbance units. The Kinetic QCL reader used the initial reading of each well as its own blank. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

VALIDATION CRITERIA: The absolute value of the correlation coefficient (r) must be \geq 0.980 in order for the test to be valid. The PPC value must be within the range of 50-200% of the known spike concentration, to show neither inhibition nor enhancement of the assay.

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

тохікоп

Endotoxins Test Validation (I & E) - USP Final Non-GLP Report: 19-01946-N1 Test Article Name: PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation

RESULTS:

	E	ndotoxin Inl		LE 1: d Enhancement R	esults	
Test Article	Sample	Dilution	рН	EU/mL	% PPC Recovery	Valid PPC (Yes/No)
PendoTECH Single Use	Test Article 1: Lot 17M6516	Neat	7.60	< 0.00868	103%	Yes
Conductivity Sensors Post 40 kGy Gamma	Test Article 2: Lot 17C51224	Neat	7.38	< 0.00500	82%	Yes
Irradiation	Test Article 3: Lot 18G75420	Neat	7.29	< 0.00500	104%	Yes

CONCLUSION: The absolute value of the correlation coefficient for the linear regression was 0.998. Neat extracts from PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation do not inhibit or enhance endotoxin detection and satisfy the USP requirements for Amoebocyte Lysate Chromogenic Validation.

AUTHORIZED PERSONNEL:

Ashley H. Chateauneuf Ashley G. Chateauneuf, B.S. Quality Assurance

Linda Haggerty, M.S. Study Director

www.toxikon.com

Page 2 of 2

TEST RESULT CERTIFICATE

Sponsor	PendoTECH		Technical Initiation	6/4/2019			
Address	174 Nassau St. Suite 256		Technical Completion 6/4/2				
Contact P.O. Number	Princeton, NJ 08542 Dennis Annarelli 2013567		Report Date Final Non-GLP Report	6/10/2019 19-01946-N2			
Test Article	PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation	Ratio	1 Unit/120.0 mL				
Lot/Batch #	Not Supplied by Sponsor	Vehicle	USP Sterile Water for Inje	ction (SWFI)			
Sterility	Sterile	Storage Condition	Room Temperature				
Study	Chromogenic Endotoxin Testing						
	The test article was labeled with Lot # 18	8G75420.					
Comments	Sponsor Request: Suspend device by cable thus immersing sensors' clear polysulfone body in liquid to get barbed "T" section fully immersed, including device's fluid path. Avoid immersing any of the white cable/wire that is attached to the device.						
	The pH of the test article was 7.24 and d	did not need to	be adjusted.				

REFERENCES: The study was conducted based upon the following references: USP 42, NF 37, 2019. <85> Bacterial Endotoxins Test. ISO 10993-12, 2012 Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials. ANSI/AAMI ST72:2011 Bacterial Endotoxins - Test Methods, Routine Monitoring, and Alternatives to Batch Testing.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: The test article (1 unit) was identified by information on the product packaging provided by the Sponsor. The barbed "T" section and fluid path of the test article was individually immersed in 120.0 mL of SWFI heated to 37 ± 1 °C and extracted at room temperature for 60 ± 2 minutes. The extract was assayed in duplicate at the neat concentration. A standard curve of endotoxin was prepared in duplicate with concentrations of 0.005, 0.05, 0.05, and 5 EU/mL. A positive product control (PPC) for each dilution was prepared containing 0.09 mL of the extract and 0.01 mL of the 5 EU/mL endotoxin standard to give a final concentration of 0.5 EU/mL. Water for Bacterial Endotoxins Test (BET) and SWFI served as the negative controls. The microtiter plate was pre–incubated in the plate reader at 37 ± 1 °C for ≥ 10 minutes. After incubation, Lysate (0.1 mL) was added to each well and the absorbance of each well at 405 nm was read every 150 seconds for a total of 40 data points or until the concentration reached 0.2 absorbance units. The Kinetic QCL reader used the initial reading of each well as its own blank. The absolute value of the correlation coefficient (r) must be ≥ 0.980 in order for the test to be valid. The study and its design employed methodology to minimize uncertainty of measurement and control of bias for data collection and analysis.

RESULTS:

TABLE 1: Endotoxin Quantity

Lot/Batch #	рН	Dilution	EU/mL	EU/Device	Valid PPC (Yes/No)
18G75420	7.24	Neat	< 0.00500	< 0.6	Yes

> 15 Wiggins Ave., Bedford MA 01730 > 800.458.4141 > Main: 781.275.3330

Toxikon.com

TOXIKON

Final Non-GLP Report: 19-01946-N2 Test Article Name: PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation

CONCLUSION: The absolute value of the correlation coefficient for the linear regression was calculated to be 0.998. The test article, PendoTECH Single Use Conductivity Sensors Post 40 kGy Gamma Irradiation, contains < 0.00500 EU/mL and < 0.6 EU/Device of bacterial endotoxin and meets the requirements of USP <85>, Bacterial Endotoxins Test.

AUTHORIZED PERSONNEL:

<u>Ashley J. Chateauneuf</u> Ashley G. Ghateauneuf, B.S. Quality Assurance

Kinda Haggerty Linda Haggerty, M.S. Study Director

Chromogenic Endotoxin Testing

www.toxikon.com

Page 2 of 2

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

STERIS

12

1.

Gamma Process Run ID 117005A

Product Code	Product Lot Number	Quantita	
40-60 SAMPLES	0020499769	Quantity	NOW
Cust Item ID: CAT. NO. CDRF1TN05		1	CS
40-60 SAMPLES	0021039808		
Cuet Item ID: CAT. NO. CDRF4HN05		1	CS
40.60 SAMPLES	0022897176	1	CS
Cust Item ID: CAT. NO. CORM8HN05		1	CS
40-60 SAMPLES	MGBF620MGDM180		CS
Cust Item ID: 20277484/001239580R		,	C8
40-60 SAMPLES	NA		-
Cust Item ID: PENDOTECH POLYSULFONE SENS	CRS	1	CS
and the second se			

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019 10:07:00 pm	Approx. Downtime (hours).	3.82
Processing Run End Date/Time	21-Jan-2019 04:04:00 am		
Minimum Specified Dose (kGy):	40.0	Minimum Delivered Dose (kGy):	42.1
Maximum Specified Dose (kGy):	60.0	Maximum Delivered Dose (kGy):	50.8
Product meets Custo	mer specifications, zero non	conformities occurred during this irradiation run.	
	Signature	e Manifest	
Reviewed and E-Signed By			
Francine Maranda (Q.		Signed On 1/21/2019 at 8.4/ UTC/ GMT Offsei (nh mm) -5:00	
Document Content Revision	s 1		
Processing Location: STERIS	EN/ISD 13485, and in alignme ANSI/AANN/SO 11125. For te	plance with applicable state and federal appliators (FDA, NRC 251 Under a quelify statem which meets the requirements of FDA int with the applicable stated, EDA ANDIACAMINGO II 137 or E RTS DROssess with common interfactors, STERIS carifics that the	A QSR B
435 Whitney Street Northborough, MA 01532 Phone: 506-393-5323 Fax: 644-658-6776	items motived the indicated d	ease within the previous and accuracy of the documetry system.	used

			2			dard Ba	Process Ri Process Ri the Prepared: 1	Prepared for END MILLIPORE - DEDFORD Process Run ID 117905A Date Prepared: 1/21/2019 8:47:34AM
Processing Location: Irrediator / Method:	Ing Loca	e.	Northborough 126, Nordion C	Northborough 128, Nortion Cobat-60 Irradiator #128, ON-STD	tior #126, Ok	4STD		
Carrier	Sec	Coordinate	-	Barcode D	heed	Instrument	Dese (kGv)	Final Dene (KSV)
Final Dose Measurements	heasure	strents						
+	-	001		0BRE00288204	8HOOH1	0484	28.7	42.1
				08R600257302	8400HT	0461	13.4	
+	2	TAS		089600289439	TH0049	0484	2.12	50.5
				08F600257878	TH0048	0481	16.1	
٠	0	TES		08F600268459	THD04S	0484	34.7	50.8
				08P600257866	THOME	0481	16.1	
		Minimu	im Dose	Minimum Dose for Record (kGy):		42.1		
		Maximu	um Dose	Maximum Dose for Record (kGy):		50.8		
	-					Signature Manifest	Manifest	
		1	Prepared By: Baez, Nech	Prepared By: Boez, Hector (Material Handler)	Handler)			Signed On 1/21/2019 at 6/23 AM UTC/ own Onseignment, 1000
		6	Approve Francit Documer	Approved By: Francine Maranda (QS & RC Analyst) Document Conten Baseton 1	& RC Anal	yst		Signed On 1/21/2019 at 8:47 AN UTS/ GNT Offset (Incom) -5:00

9.7 Appendix G: Assembled Sensor Certificate: B&F

тохікоп

ADVANCING YOUR INNOVATION

TEST RESULT CERTIFICATE

Sponsor	PendoTECH	Technical Initiation	2/8/2019
Address	174 Nassau Street	Technical Completion	2/13/2019
	Ste.256	-	
	Princeton, New Jersey 08542		
Contact	Dennis Annarelli	Report Date	2/15/2019
P.O. Number	2013094	Final Non-GLP Report	19-00365-N1
Test Article	PendoTECH Single Use Pressure Senso	r Polysulfone Post Gamma Irradiation (>4	0KGy)
Lot/Batch #	Not Supplied by Sponsor		
Study	Method Suitability Test via Membrane Filt	ration – USP	
Comments	None		

REFERENCES: The study was conducted based upon the following references: USP 41, NF 36, 2018. <71> Sterility Tests.

ISO/IEC 17025, 2017, General Requirements for the Competence of Testing and Calibration Laboratories.

GENERAL PROCEDURE: Six (6) test articles were supplied by the Sponsor for testing. A quanticult of Bacillus subtilis (B. subtilis), Aspergillus brasiliensis (A. brasiliensis, formerly known as Aspergillus niger), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans), and Clostridium sporogenes (C. sporogenes) all consisting of 10-100 CFU were used. Cultures were rehydrated according to manufacturer's instructions.

Each test article were individually immersed in 100 mL of sterile Fluid D in a sterile bag. A volume of 98 mL of extract was recovered and aseptically membrane filtered. Following membrane filtration and rinse with 10 mL of sterile Phosphate Buffered Saline (PBS), the filters were directly transferred (one unit per vessel) into 100 mL of sterile Trypticase Soy Broth (TSB) and 100 mL of sterile Fluid Thioglycollate medium (FTM). One TSB vessel was inoculated with *Bacillus subtilis*. One TSB vessel was inoculated with *Candida albicans*. The third TSB vessel was inoculated with *Aspergillus brasiliensis*. One FTM vessel was inoculated with *Pseudomonas aeruginosa*. One FTM vessel was inoculated with *Staphylococcus aureus*. The remaining FTM vessel was inoculated with *Clostridium sporogenes*.

As positive controls, an equivalent number of TSB and FTM vessels were inoculated with the respective organisms. One TSB and one FTM vessel were un-inoculated and served as negative controls. A volume of 20 mL of PBS and 20 mL of Fluid D of the same lot used was membrane filtered and the filters were put in respective containers containing 100 mL of TSB each. All TSB vessels were incubated aerobically at 20-25 °C for 5 days. All FTM vessels except *C. sporogenes* were incubated aerobically at 30-35 °C for 5 days. FTM vessels with *C. sporogenes* were incubated ananerobically at 30-35 °C for 5 days. Growth was visually compared between test and control articles at specific time points.

RESULTS: The growth of each organism was independent of the presence of the test article. Growth was observed for all organisms and test article media conditions in TSB by Day 3. No growth was observed in the negative control, Fluid D, and PBS.

		010	milling fundation	results r	00			
			Growth (+	/-) per Media	um			
			Magative					
B.s	ubtilis	C. al	bicans	A. brasiliensis		Control	Fluid D	PBS
With TA Without TA	With TA	Without TA	With TA	Without TA				
W	W	W	W	W	W	W	W	W
W	W	w	W	w	W	W	W	W
+	+	+	+	+	+	-	-	-
+	+	+	+	+	+	-	-	-
+	+	+	+	+	+	-	-	-
	With TA W	W W	Orga B. subtilis C. al With TA Without TA With TA W W W	Growth (+ Organism B, subtilis C. albicans With TA Without TA Without TA W W W W	Growth (+/-) per Media Organism B. subtilis C. albicans A. bra With TA Without TA With TA Without TA With TA W W W W W	Growth (+/-) per Medium Organism B, subtilis C. albicans A. brasiliensis With TA Without TA Without TA Without TA W W W W W	Growth (+/-) per Medium Organism Negative Control With TA Without TA Without TA Without TA Weak Control W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W H + + + + + - - + + + + + + - - + + + + + + - -	Growth (+/-) per Medium Organism Negative Control Fluid D B, subtilis C. albicans A. brasiliensis Negative Control Fluid D With TA With TA Without TA With TA Without TA We with TA Without TA W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W H + + + + - - - H + + +

TABLE 1: Sterility Validation Results – TSB

TA = Test article, W = Weekend, (-) = No Growth, (+) = Growth

Toxikon Corporation 15 Wiggins Ave., Bedford, MA 01730 USA 1.800.458.4141 Main: 1.781.275.3330

τοχικοπ

Method Suitability Test via Membrane Filtration – USP Final Non-GLP Report: 19-00365-N1 Test Article Name: PendoTECH Single Use Pressure Sensor Polysulfone Post Gamma Irradiation (>40KGy)

			Ste	TABLE rility Validation		тм			
1.0	tien terrester en la			Growth (+	/-) per Mediu	um			Section 1
-	al da par		Orga	inism			Negative		
Day	C. spo	rogenes	S. a	ureus	P. aer	ruginosa	Control	Fluid D	PBS
	With TA	Without TA	With TA	Without TA	With TA	Without TA	Control		
1	W	W	W	W	W	W	W	W	W
2	w	W	w	W	W	W	W	W	W
3	+	+	+	+	+	+	-	-	-
4	+	+	+	+	+	+	-	-	-
5	+	+	+	+	+	+	-	-	-

TA = Test article, W = Weekend, (-) = No Growth, (+) = Growth

CONCLUSION: The test articles are considered non-bacteriostatic and non-fungistatic, according to the USP guidelines.

AUTHORIZED PERSONNEL:

John/Lugo-Toro,/B.S Quality Assurance

MBS for

Aparajita Mukherjee, M.S. Study Director

www.toxikon.com

Page 2 of 2

Certificate Of Processing

Prepared for EMD MILLIPORE - BEDFORD

Gamma Process Run ID 117005A

Product Code	Product Lot Number	Quantity	
40-60 SAMPLES	0020499769	Quantity	UOM
Cust Item ID: CAT, NO. CDRF1TN05		1	CS
40-60 SAMPLES	0021039608		
Cust Item ID: CAT. NO. CDRF4HN05		1	CS
0-60 SAMPLES	0022897176	82	1212
Cust Item ID: CAT. NO. CDRM8HN05		1	CS
40-60 SAMPLES	MGBF620/MGDM180	2	2.1
Cust Item ID: 20277484/00123958DR		1	CS
0-60 SAMPLES	NA		
Cust Item ID: PENDOTECH POLYSULFONE SENSORS		1	CS

PO Number: N1402721

Processing Run Start Date/Time:	20-Jan-2019	10:07:00 pm	Approx. Downtime (hours):	3.82
Processing Run End Date/Time:	21-Jan-2019	04:04:00 am		
Minimum Specified Dose (kGy):	40.0		Minimum Delivered Dose (kGy):	42.1
Maximum Specified Dose (kGy):	60.0		Maximum Delivered Dose (kGy):	50.8
Product meets Custo	mer specificati	ons; zero nonce	phormities occurred during this irradiation run.	
		Signature	Manifest	
Reviewed and E-Signed By		- 1100 - 1 11	Signed On 1/21/2019 at 8:4	8 AM
. Francine Maranda (Q		lyst)	UTC / GMT Offset (hhimm) -5:00	3
Document Content Revision	: 1			
Processing Location: STERIS	and OSHA) (and provide service	ance with applicable state and federal regulations (FDA, NRC s under a quality system which meets the requirements of FD	A 050
135 Whitney Street	ENVISO 1348	55, and in alignmen	t with the applicable standard, EN ANSI/AAM//ISO 11137 or E is processed with gamma irradiation, STERIS cartifies that the	Th/
Vorthborough, MA 01532 Phome: 508-393-9323	items receive	id the indicated dos	as within the precision and accuracy of the dosimetry system	used.
Fax: 844-698-9776				
00034/01354/01369 Last Rev in Rel. 3.6.5.1			Rolease Date 05-Jun-2017	Page 1

ú

STERIS

for

					Dar	te Prepared: 1	Date Prepared: 1/21/2019 8:47:34AM
ocess adiato	Processing Location: Irradiator / Method:	2	Northborough 126, Nordion Cobalt-60 Irradiator #126, ON-STD	stor #126, ON	STD		
Carrier	Seq	Coordinate	ate Barcode ID	Insert	Instrument Dose (kGy)	Dose (kGv)	Final Dose (KGV)
Dose	Measur	Final Dose Measurements					
-	-	0C1	0BR600288204	TH0049	0484	28.7	42.1
			08R600257802	TH0048	0481	13.4	
-	2	TAS	0BR600288439	TH0049	0484	34.4	50.5
			0BR600257878	TH0048	0481	16.1	
-	6	TES	0BR600288499	TH0049	0484	34.7	50.8
			0BR800257886	TH0048	0481	16.1	
		Minim	Minimum Dose for Record (kGy):	4	42.1		
		Maxim	Maximum Dose for Record (kGy):	5	50.8		
	1			5			
					Signature Manifest	lanifest	
	-	Ś	Prepared By: Baez, Hector (Material Handler)	Handler)			Signed On 1/21/2019 at 6:23 AM UTC/ GMT offset (hhitmui): -5:00
		\$	Approved By: Francine Maranda (QS & RC Analyst)	& RC Anal)	(st)		Signed On 1/21/2019 at 8:47 AM UTC/ GMT Offset (hhmme); -5:00
	-						

9.8 Appendix H: Certificates of Gamma Irradiation for Gamma Compatibility **Investigation (7.5)**

A Sotera Health company

Certificate of Processing

04/05/2021 15:57:34 GMT Page 1 of 1

STERIGENICS 108 Lake Denmark Rockaway NJ 07866

TEL 973 625-8400 FAX 973 625-7820 www.sterigenics.com

Customer N P.O.#	Name:	Flex 2807	biosys, Inc. 7	Processing Facility:	Rockaway	Work Order # Sales Order #	2858627 2736359
	25-40 kG	iy.		FLX, Gamma Treatment	Received Date/Time:	03/30/2021 16:34:00	GMT
SO Line #	Qty	UOM	Customer Item Number	Customer Item Description	Customer Lot Number	Customer	
101.000	20	CA	9# CT 22X17X8		1902447, 1902422	FXK-0003-000	6, FXM-0020
02.000	22	CA	9# CT 22X17XB		1902400, 1902422	0066 FXK-0003-000 0066	5. FXM-0020
03.000	8	CA	9# CT 22X17X8		1902400, 1 902844	FXK-0003-000	5. FXM-0020
04.000	10	CA	9# CT 22X17XB		1902400, 1 902409	0066 FXK-0003-000 0002	5, FXL-0300-
05.000	1	CA	9# CT 22X17X8		1902399, 1902536	FXK-0003-000	5, FXM-500M
05.000	2	CA	9# CT 22X17X8		1902399, 1902595	0013 FXK-0003-000 0021	5, FXB-500M
07.000	12	CA	9# CT 22X17X8		1902399, 1902398	FXK-0003-0006	5, FXK-0001-
08.000	10	CA	9# CT 22X17X8		1902399, 1902773	0393 FXK-0003-0006 0002	, FXL-0400-
09.000	10	CA	9# CT 22X17X8		1902399, 1902774	FXK-0003-0006	, FXL-0400-
10.000	9	CA	9# CT 22X17X8		1902399, 1902775	0002 FXK-0003-0006 0002	i. FXL-0400-
11.000	1	CA	9# CT 22X17X8		1902399, 1902849	FXK-0003-0006	i,
	105	CA	Total			GAMMA22X172	A_803

Quality Test Summary

	Op#	Quality Test Description					Signed By	
-		Guanty rest Description	Minimum Spec	Maximum Spec	Result	Pass/Fail	User	Date /Time
	450.00	Minimum Dose	25.0 kGy Reason Code Test	40.0 kGy	27.4 KGY	Pass		04/03/2021 14:46:34 GMT
	450.00	Maximum Dose	25.0 kGy Reason Code Test	40.0 kGy	35.1 KGY	Pass	DWAYNE RITCHIE DRITCHIE DWAYNE RITCHIE	04/03/2021 14:46:52 GMT

Sterigenics certifies that the materials listed above (as described by the Manufacturer) received the indicated doses within the precision and accuracy of the dosimetry system employed.

Electronically Signed By: CONRAD WEISS Reason: Work Order Completions

Date: 04/05/2021 15:56:05 GMT

ISO 9001 and ISO 13485 Registered

9.9 Appendix I: Certificates of Calibration for Pressure Gauge used in 8.1

625 East Bunker Court Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innocalsolutions.com

NIST Traceable **Calibration Report**

Reference Number: 1374549 PO Number: RANDD

PendoTECH 3490 US Route 1 **Building 15F** Princeton, NJ 08540 United States

Manufacturer:	Druck Inc.
Model Number:	DPI 104 0-100 PSI
Description:	Pressure, Digital Gauge, 0-100 PSI
Asset Number:	CP21618
Serial Number:	2936090
Procedure:	DS Druck DPI 104 0-100PSI
Remarks	

Calibration Date: Calibration Due Date: Condition As Found: Condition As Left:

06/10/2019 06/10/2020 In Tolerance In Tolerance, No adjustment

NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the lab's standard operating procedures. No adjustments were made to the unit. C.

		Stand	lards Utilized		
Asset No.	Manufacturer	Model No.	Description	Cal. Date	Due Date
CP144957	Fluke Corporation	PM600-G100K	Pressure, Measurement Module 0 - 15PSI	05/24/2019	
CP144959	Fluke Corporation	PM600-A700K	Pressure, Measurement Mod -12.1 -100PSI	05/23/2019	

FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
Zero Reference	0.00	0.00		Same		Reference Only
Increasing Pressure Accuracy	10.00 psi	10.00		Same		9.95 to 10.05 psi [EMU 0.007 psi][TUR 7.1-1]
<u>1</u>	20.00 psi	20.00		Same		19.95 to 20.05 psi [EMU 0.031 psi][TUR 1.6.1]
I.	30.00 psi	30.01		Same		29.95 to 30.05 psi [EMU 0.0092 psi][TUR 5.5:1]
P	40.00 psi	40.00		Same		39 95 to 40.05 psi [EMU 0.01 psi][TUR 4.8 1]
1	50 00 pei	50.01		Same		49.95 to 50.05 psi [EMU 0.011 psi][TUR 4.4-1]
1.	60.00 psi	50.01		Same		59 95 to 60.05 psi [EMU 0 013 psi][TUR 4 0.1]
1	70.00 psi	70.01		Same		69 95 to 70.05 psi [EMU 0.014 psi][TUR 3.7.1]
1	80.00 psi	80.01		Same		79.95 to 80.05 psi [EMU 0.015 psi][TUR 3.4.1]
1	90.00 psi	90.01	1	Same		89 95 to 90 05 psi [EMU 0 015 psi][TUR 3 3 1]
1	100.00 psi	100.01		Same		99 95 to 100.05 psi [EMU 0.016 psi][TUR 3.1.1]
Decreasing Pressure Test	90 00 pei	10.00		Same		89.95 to 90.05 psi [EMU 0.015 psi][TUR 3.3.1]
.1	80.00 psi	80.01		Same		79 95 to 80.05 psi [EMU 0.015 psi][TUR 3.4.1]
1	70.00 psi	70.01		Same		69.95 to 70.05 psi [EMU 0.014 psi][TUR 3.7.1]
	60.00 psi	60.01		Same		59.95 to 60.05 psi [EMU 0.013 psi][TUR 4.0:1]
1	50.00 psi	50.01		Same		49.95 to 50 05 psi [EMU 0.011 psi][TUR 4.4 1]
1	40.00 psi	40.01		Same		39.95 to 40.05 psi [EMU 0.01 psi][TUR 4.8:1]
1	30.00 psi	30.00		Same		29.95 to 30 05 psi [EMU 0.0092 psi][TUR 5.5:1]

FOR	CTION TESTED	North Line		tion Data		
	CHON TESTED	Nominal Valu 20 00 psi		Out of Tel As Left		N TOLERANCE
	1		20.00	Same	19.95 to	20.05 psi psi][TUR 1.6.1]
	1	10.00 psi	10.00	Same	9.95 to	10.05 psi
	Zero Reference	0.000 psi	0.00	Same		psi)[TUR 7.1:1] nce Only
	210 C					
mperature	42% RH	Calibration Perform Zicgler, Jeff		Der Carine and	Quality Reviewer:	4805
mperature: umidity: ot. No.:	1583957		335 Metrologi	ist 847-327-5335	Pietronicco, Mike	

9.10 Appendix J: Certificate of Calibration for Pressure Gauge used in 8.4

INNOVATIVE CALIBRATION SOLU INNOVATIVE CALIBRATION SOLU 625 East Bunker Court Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innacalsolutions.com	Reference #: 7263183-00	T Traceable ration Report Pendotech 3490 US Rte 1 Bldg 15 F NJ 08540 United States	Reference Number: PO Number:	58 499231
Manufacturer: Druck h	10.	Collibration	Dete: 04/05/0014	

manufacturer:	DILICK IIIC.
Model Number:	DPI 104 0-100 PSI
Description:	Pressure, Digital Gauge, 0-100 PSI
Asset Number:	CP21618
Serial Number:	2936090
Procedure:	DS Universal Pressure Gauge-10
Damandar.	5

Calibration Date: 04/25/2014 Calibration Due Date: Condition As Found: Condition As Left:

04/25/2015 In Tolerance In Tolerance, No adjustment

Remarks: NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the lab's standard operating procedures. No adjustments were made to the unit.

Standards Utilized

Asset No.	Manufacturer	Model No.	Description	Cal. Date	Due Date
CP05091	DH Instruments Inc.	PPC3-700K A700KS/G100KS	Pressure, -14.7 to 100 psi Calibrator	12/31/2013	12/31/2014

		Calibra	2			
UNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
increasing	0.000 psi	0.00		Same		-0.050 to 0.050 psi [EMU 0.00075 psi][TUR 67:1]
	10.000 psi	10.00		Same		9.950 to 10.050 psi [EMU 0.0012 psi][TUR 41:1]
	20.000 psi	20.00		Same		19.950 to 20.050 psi [EMU 0.0031 psi][TUR 16:1]
	30.000 psi	30,00		Same		29.950 to 30.050 psi [EMU 0.0031 psi][TUR 16:1]
1	40.000 psi	40,00		Same		39.950 to 40.050 psi [EMU 0.0040 psi][TUR 12:1]
	50.000 psi	50.00		Same		49.950 to 50.050 psi [EMU 0.0050 psi][TUR 9.9:1]
1	60.000 psi	60.01		Same		59,950 to 60.050 psi [EMU 0.0060 psi][TUR 8,3:1]
1	70.000 psi	70,01		Same		69,950 to 70,050 psi [EMU 0,0070 psi][TUR 7,1:1]
1	80.000 psi	80,01		Same		79.950 to 80.050 psi [EMU 0.0080 psi][TUR 6.2:1]
1	90.000 psi	90.01		Same		89.950 to 90.050 psi [EMU 0.0090 psi][TUR 5.5:1]
1	100,000 psi	100.00		Same		99.950 to 100.050 psi [EMU 0.010 psi][TUR 5.0:1]
Decreasing	90.000 psi	90,00		Same		89.950 to 90.050 psi [EMU 0,0090 psi][TUR 5.5:1]
1	80.000 psi	80.01		Same		79.950 to 80.050 psi [EMU 0.0080 psi][TUR 6.2:1]
I	70,000 psi	70.01		Same		69.950 to 70.060 psi [EMU 0.0070 psi][TUR 7.1:1]
Ι	60.000 psi	60.01		Same		59.950 to 60,050 psi [EMU 0.0060 psi][TUR 8.3:1]
I	50.000 psi	50.01		Same		49,950 to 50,050 psi [EMU 0.0050 psi][TUR 9.9:1]
1	40.000 psi	40.00		Same		39,950 to 40,050 psi [EMU 0,0040 psi][TUR 12:1]
1	30.000 psi	30.00		Same		29.950 to 30.050 psi [EMU 0.0031 psi][TUR 16:1]
1	20.000 psi	20.00		Same		19.950 to 20.050 psi [EMU 0.0031 psi][TUR 16:1]

3	Calibration Data					
FUNCTION TESTED	Nominal Value	As Found	Out at Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
	10.000 psi	10,00		Same		9.950 to 10.050 psi [EMU 0.0012 psi][TUR 41:1]
	0.000 psi	0.00		Same		-0.050 to 0.050 psi [EMU 0.00075 psi][TUR 67:1]

Temperature: 20° C Humidity: 41% RH		Calibration Performed By:		Quality Reviewer:		
Rpt. No.:	578968	Santos, Daniel	Metrologist	847-327-5837	Pietronicco, Mike	4/25/2014
		Name	Title	Phone	Name	Date

This report may not be reproduced, except in full, without written permission of Innocal. The results stated in this report relate only to the items tested or calibrated. Measurements reported herein are traceable to SI units via national standards maintained by NIST and were performed in compliance with MIL-STD-45682A, ANSI/NCSL 2540-1-1994, 10CFR50, Appendix B, ISO 9002-94, and ISO 17025:2005. Guard Banding, if reported on this certificate, is applied at a Z-factor of 30% for test points with a test uncertainty ratio (TUR) below 4:1. The estimated measurement uncertainty (EMU), if reported on this certificate, is being reported at a confidence level of 95% or K=2 unless otherwise noted in the remarks section.

Report Number: 578968

Druck Inc. / DPI 104 0-100 PSI, Pressure, Digital Gauge, 0-100 PSI

9.11 Appendix K: Certificate of Calibration for Pressure Gauge used in 8.5 and 8.6

INNOVATIVE CALIBRATION SOLUTIONS 625 East Bunker Court Vernon Hills, Illinois 60061 PH: 866-466-6225 Fax: 847-327-2993 www.innocalsolutions.com

NIST Traceable **Calibration Report**

PendoTECH 3490 US Route 1 Princeton, NJ 08540 United States

Reference Number: 1408403 PO Number: RANDD OK TOUSE Ume

Manufacturer:	Digi-Sense
Model Number:	68349-06
Description:	Pressure, Digital Gauge, 0 to 100 psig
Asset Number:	CP355333
Serial Number:	1912310225
Procedure:	DS Universal Pressure Gauge-10

50077.202

Calibration Date: 08/24/2021 Calibration Due Date: 08/24/2022 **Condition As Found:** In Tolerance Condition As Left: In Tolerance, No adjustment

Remarks: NIST-traceable calibration performed on the unit referenced above in accordance with customer requirements, published specifications and the

Standards Utilized							
Asset No.	Manufacturer	Model No.	Description	Cal. Date	Due Date		
CP144959	Fluke Corporation	PM600-A700K	Pressure, Measurement Mod -12.1 -100PSI	07/08/2021	07/31/2022		

FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE
Increasing	0.000 psi	0.00		Same		-0.250 to 0.250 psi [EMU 0.00058 psi][TUR 428 1]
1	10.000 psi	9.98		Same		9.750 to 10.250 psi [EMU 0.0014 psi][TUR 175.1]
	20.000 psi	20.01		Same		19.750 to 20.250 psi [EMU 0.0054 psi][TUR 46.1]
	30 000 psi	30.02		Same		29.750 to 30.250 psi [EMU 0.0059 psi][TUR 42:1]
	40.000 psi	40.02		Same		39 750 to 40 250 psi [EMU 0 0069 psi][TUR 36 1]
1	50.000 psi	50.01		Same		49.750 to 50.250 psi [EMU 0.0079 psi][TUR 32.1]
1	60.000 psi	60.01		Same		59.750 to 60.250 psi [EMU 0.0089 psi][TUR 28.1]
1	70.000 psi	70.02		Same		69.750 to 70.250 psi [EMU 0.0099 psi][TUR 25.1]
1	80.000 psi	80.01		Same		79.750 to 80.250 psi [EMU 0.011 psi][TUR 23.1]
T	90.000 psi	90.01		Same		89.750 to 90.250 psi [EMU 0.012 psi][TUR 21.1]
L.	100 000 psi	100.02		Same		99.750 to 100.250 psi [EMU 0.013 psi][TUR 19:1]
Decreasing	90.000 psi	90.02		Same		89.750 to 90.250 psi [EMU 0.012 psi][TUR 21:1]
	80.000 psi	80.02		Same		79 750 to 80 250 psi [EMU 0.011 psi][TUR 23 1]
	70 000 psi	70.02		Same		69.750 to 70.250 psi [EMU 0.0099 psi][TUR 25.1]
1	60.000 psi	60.03		Same		59.750 to 60.250 psi [EMU 0.0089 psi][TUR 28:1]
1	50.000 psi	50.02		Same		49.750 to 50.250 psi [EMU 0.0079 psi][TUR 32.1]
	40.000 psi	40.02		Same		39 750 to 40 250 psi [EMU 0.0069 psi][TUR 36:1]
.01 H	30.000 ps	30.03		Same		29 750 to 30 250 psi [EMU 0.0059 psi][TUR 42:1]
1	20 000 psi	20.01		Same		19 750 to 20 250 psi [EMU 0.0054 psi][TUR 46:1]

Page 1 of 2

Calibration Data								
FUNCTION TESTED	Nominal Value	As Found	Out of Tol	As Left	Out of Tol	CALIBRATION TOLERANCE		
1	10.000 psi	9.99		Same		9.750 to 10.250 psi [EMU 0.0014 psi][TUR 175.1]		
1	0.000 psi	0.00		Same		-0.250 to 0.250 psi [EMU 0.00058 psi][TUR 428.1]		

Temperature Humidity:	: 19º C 61% RH	Calibration Performe	d By:			Quality Reviewer:	
Rpt. No.:	1662895	Fitzsimons, Sean	357	Metrologist	847-327-5305	Alexander, James	08/24/2021
		Name	ID #	Title	Phone	Name	Date

Measurements sported needs to an accessible to 20 onto we advant standards maintained by MIDT and see certaining or accessible were detailed with a sported standards. All STD search and All STD search an

9.12 Appendix L: X-ray Certificate of Processing for Section 8.6

■STERIS

Manual Certificate of Processing

Prepared For: PENDOTECH

Processing Run ID: 10834-40001554

Product Code	Product Lot Number	Quantity	UOM
N/A	NA	1	CS

Other Information: Description: Single Use Sensors. PO # 2016692

Processing Run Start Date/Time:	07/14/2021, 7:24AM CST
Processing Run End Date/Time:	08/19/2021, 7:28AM CST
Approximate Downtime (Hours):	0.00

Minimum Specified Dose (kG	y): 50.0	Minimum Delivered Dose (kGy):	61.8			
Maximum Specified Dose (kG		Maximum Delivered Dose (kGy):	64.5			
A nonconformity occurred du	uring this irradiat	tion run - Reference Customer Dispo	sition.			
Reference: NC-23394	-					
Comments: Dose added to n	neet requested d	ose range. Dose range within Custor	ner			
requested dose range.	•	°				
Latrice Sutherland, X Justich 08/23/2021, 07:27AM CST QA Manager Approval / Date / Time (Print and Sign) Michael Ezzo 8/23/2021 10:42AM EST Quality Zone Director Approval / Date / Time (Print and Sign)						
Processing Location: Operating facilities are in compliance with applicable state and federal regulations 2500 Commerce Drive (FDA, NRC, EPA, and OSHA) and provide services under a quality system which meets the requirements of FDA QSR, EN/ISO 13485, and with EN ANSI/AAMI/ISO 11137. STERIS certifies that these processed items received the indicated doses within the precision and accuracy of the dosimetry system used and/or Customer approval.						
WI-01678 Form: 2 Rev:	0 Eff Date:	Oct 19, 2018 Status: 07b.	Page 1 of 1			

WI-01678	Form: 2	Rev:	0	Eff Date:	Oct 19, 2018	Status:	07b. Completed: All Gamma Facilities	Page 1 of 1
							racinica	

			STERI (Ala P Pro	S Manual D anine Dosir repared For: cess Run ID: Time Prepare	STERIS Manual Dosimetry Record (Alanine Dosimetry System) Prepared For: PENDOTECH Process Run ID: 10834-40001554 Date and Time Prepared: 08/23/2021 6:55AM	ecord n) 54 6:55AM			
Processing Location:RTC Irradiator / Method:EBIR-03	ion:RTC 1:EBIR-0:					Initial	Final		
Carrier	Seq	Coordinate	Barcode ID	Insert	Instrument	Dose (kGy)	Dose (kGy)	Measurement Source	
÷	-	-	0BX592076386	.0040	11-0186	0.0	62.9	13.1	
• +	- -	-	0BX592026099	.0040	11-0186	0.0	0.0	49.8	
	-	. 2	0BX592076219	,0040	11-0186	0.0	61.8	12.5	
		. ~	0BX592020042	0040	11-0186	0.0	0.0	49.3	
		1 00	0BX592076365	0040	11-0186	0.0	63.8	13.5	
		6	08X592020005	.0040	11-0186	0.0	0.0	50.3	
		4	0BX592076319	.0040	11-0186	0.0	61.8	12.8	
	- .	4	0BX592020069	.0040	11-0186	0.0	0.0	49.0	
	÷	- vo	0BX592076103	.0040	11-0186	0.0	64.5	13.6	
		n na	0BX592026490		11-0186	0.0	0.0	50.9	
	Minim	um Dose for	Minimum Dose for Record (kGv):		9	61.8			
	Maxim	um Dose for	Maximum Dose for Record (kGv):		9	64.5			
			Vecon (vol)			the facetion that	final Area service		
Other Information:	_	NC-23394. Measu al dose for both d	Refer to NC-23394. Measurement source shows the acutal cose for each dowinerer location, the milal cose reports the total dose for both dosimeters for each location. The dose reported on this record is one significant figure.	s the acutal dose ation. The dose	e tor each dustine reported on this	record is one sign	nnificant figure.		
repared By Print N	lame / Titl Name / Ti	e / Sign and Date tie / Sign and Da	Prepared By Print Name / Title / Sign and Date: LOTA/ICC SUTHE/IOCH , OSEC MONOSEC , JUNUCA OA Approved Print Name / Title / Sign and Date: HOU/ICU MONUL, O.A. TECH 1, MUMP 8/13/2/1	utherlon ayer, GA	H TECH 1, 1	18 AUN	12121	10-20-20	
WI-01678, Form 1, Revision: 0	1. Revisio		Eff Date: Oct 19, 2018 Status: 07b, Completed All Gamma Facilities	3 Status: 07h	b. Completed	All Gamma Fac	cilities	Page 1 of 1	_